Please wait a minute...
Advances in Psychological Science    2019, Vol. 27 Issue (6) : 1058-1071     DOI: 10.3724/SP.J.1042.2019.01058
Regular Articles |
The effect of acute aerobic exercise on cognitive performance
ZHANG Bin,LIU Ying()
School of Kinesiology, Shanghai University of Sport, Shanghai 200438, China
Download: PDF(682 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks     Supporting Info
Guide   
Abstract  

Acute aerobic exercise is a bout of aerobic exercise lasting from 10 to 60 minutes. Acute aerobic exercise can temporarily change cognitive performance, such as sensory sensitivity, memory, executive function. The effects of acute aerobic exercise on cognitive performance are varying, which are moderated by participant physical fitness level, exercise intensity and type of exercise. Arousal theory, Reticular- activating hypofrontality model, catecholamines hypothesis, BDNF hypothesis and strength model of self-control have been proposed to account for the effect of acute aerobic exercise on cognitive performance. Future studies are suggested to investigate the mechanism of how acute aerobic exercise effects cognitive performance, explore the interfering effects of different forms of acute aerobic exercise, such as mind-body exercises, group sports, and thus providing more evidence for the long-term ‘exercise prescriptions’.

Keywords acute exercise      aerobic exercise      executive function      moderator     
ZTFLH:  B849: G804.8  
Corresponding Authors: Ying LIU     E-mail: yummy_liu@126.com
Issue Date: 22 April 2019
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Bin ZHANG
Ying LIU
Cite this article:   
Bin ZHANG,Ying LIU. The effect of acute aerobic exercise on cognitive performance[J]. Advances in Psychological Science, 2019, 27(6): 1058-1071.
URL:  
http://journal.psych.ac.cn/xlkxjz/EN/10.3724/SP.J.1042.2019.01058     OR     http://journal.psych.ac.cn/xlkxjz/EN/Y2019/V27/I6/1058
1 陈爱国, 殷恒婵, 颜军, 杨钰 . ( 2011). 不同强度短时有氧运动对执行功能的影响. 心理学报, 43( 9), 1055-1062.
2 蒋长好, 陈婷婷 . ( 2013). 有氧锻炼对执行控制和脑功能的影响. 心理科学进展, 21( 10), 1844-1850.
url: http://journal.psych.ac.cn/xlkxjz/CN/article/article2959.shtml
3 王莹莹, 周成林 . ( 2014). 急性有氧运动的强度与抑制能力的剂量关系——来自ERP的证据. 体育科学, 34( 11), 42-49.
4 Ando S., Kimura T., Hamada T., Kokubu M., Moritani T., & Oda S . ( 2005). Increase in reaction time for the peripheral visual field during exercise above the ventilatory threshold. European Journal of Applied Physiology, 94( 4), 461-467.
url: http://link.springer.com/10.1007/s00421-005-1330-7
5 Arnsten, A. F. T., & Li, B-M . ( 2004). Neurobiology of executive functions: Catecholamine influences on prefrontal cortical functions. Biological Psychiatry, 57( 11), 1377-1384.
6 Audiffren, M., & André, N . ( 2015). The strength model of self-control revisited: Linking acute and chronic effects of exercise on executive functions. Journal of Sport and Health Science, 4( 1), 30-46.
url: http://dx.doi.org/10.1016/j.jshs.2014.09.002
7 Audiffren M., Tomporowski P. D., & Zagrodnik J . ( 2009). Acute aerobic exercise and information processing: Modulation of executive control in a random number generation task. Acta Psychologica, 132( 1), 85-95.
url: https://linkinghub.elsevier.com/retrieve/pii/S0001691809000894
8 Audiffren M., Tomporowski P. D., & Zagrodnik J . ( 2008). Acute aerobic exercise and information processing: Energizing motor processes during a choice reaction time task. Acta Psychologica, 129( 3), 410-419.
url: https://linkinghub.elsevier.com/retrieve/pii/S0001691808001224
9 Barella L. A., Etnier J. L., & Chang Y. K . ( 2010). The immediate and delayed effects of an acute bout of exercise on cognitive performance of healthy older adults. Journal of Aging and Physical Activity, 18( 1), 87-98.
url: http://journals.humankinetics.com/doi/10.1123/japa.18.1.87
10 Baumeister R. F., Bratslavsky E., Muraven M., & Tice D. M . ( 1998). Ego depletion: Is the active self a limited resource? Journal of Personality and Social Psychology, 74( 5), 1252-1265.
url: http://doi.apa.org/getdoi.cfm?doi=10.1037/0022-3514.74.5.1252
11 Baumeister R. F., Gailliot M. T., Dewall C. N., & Oaten M. J . ( 2006). Self-regulation and personality: How interventions increase regulatory success, and how depletion moderates the effects of traits on behavior. Journal of Personality, 74( 6), 1773-1802.
url: http://www.blackwell-synergy.com/toc/jopy/74/6
12 Berridge C. W., Devilbiss D. M., Andrzejewski M. E., Arnsten A. F. T., Kelley A. E., Schmeichel B., .. Spencer R. C . ( 2006). Methylphenidate preferentially increases catecholamine neurotransmission within the prefrontal cortex at low doses that enhance cognitive function. Biological Psychiatry, 60( 10), 1111-1120.
url: https://linkinghub.elsevier.com/retrieve/pii/S0006322306005336
13 Bijker K., de Groot G., & Hollander A . ( 2002). Differences in leg muscle activity during running and cycling in humans. European Journal of Applied Physiology, 87( 6), 556-561.
url: http://link.springer.com/10.1007/s00421-002-0663-8
14 Blakemore, S.-J., & Choudhury, S . ( 2006). Development of the adolescent brain: Implications for executive function and social cognition. Journal of Child Psychology and Psychiatry, 47( 3-4), 296-312.
url: http://www.blackwell-synergy.com/toc/jcpp/47/3-4
15 Bull, R., & Scerif, G . ( 2001). Executive functioning as a predictor of children's mathematics ability: Inhibition, switching, and working memory. Developmental Neuropsychology, 19( 3), 273-293.
url: http://www.tandfonline.com/doi/abs/10.1207/S15326942DN1903_3
16 Byun K., Hyodo K., Suwabe K., Ochi G., Sakairi Y., Kato M., .. Soya H . ( 2014). Positive effect of acute mild exercise on executive function via arousal-related prefrontal activations: An fNIRS study. Neuroimage, 98( 98), 336-345.
url: https://linkinghub.elsevier.com/retrieve/pii/S1053811914003474
17 Chaddock L., Erickson K. I., Prakash R. S., Kim J. S., Voss M. W., VanPatter M., .. Kramer A. F . ( 2010). A neuroimaging investigation of the association between aerobic fitness, hippocampal volume, and memory performance in preadolescent children. Brain Research, 1358, 172-183.
url: https://linkinghub.elsevier.com/retrieve/pii/S0006899310018317
18 Chaddock L., Hillman C. H., Buck S. M., & Cohen N. J . ( 2010). Aerobic fitness and executive control of relational memory in preadolescent children. Medicine & Science in Sports & Exercise, 43( 2), 344-349.
url: http://dx.doi.org/ine
19 Chan R. C. K., Shum D., Toulopoulou T., & Chen, E. Y. H . ( 2008). Assessment of executive functions: Review of instruments and identification of critical issues. Archives of Clinical Neuropsychology, 23( 2), 201-216.
url: https://academic.oup.com/acn/article-lookup/doi/10.1016/j.acn.2007.08.010
20 Chang Y.-K., Alderman B. L., Chu C.-H., Wang C.-C., Song T.-F., & Chen F.-T . ( 2017). Acute exercise has a general facilitative effect on cognitive function: A combined ERP temporal dynamics and BDNF study. Psychophysiology, 54( 2), 289-300.
url: http://doi.wiley.com/10.1111/psyp.12784
21 Chang, Y. K., & Etnier, J. L . ( 2009). Exploring the dose-response relationship between resistance exercise intensity and cognitive function. Journal of Sport & Exercise Psychology, 31( 5), 640-656.
url: http://dx.doi.org/al of Sport
22 Chang Y. K., Labban J. D., Gapin J. I., & Etnier J. L . ( 2012). The effects of acute exercise on cognitive performance: A meta-analysis. Brain Research, 1453, 87-101.
url: https://linkinghub.elsevier.com/retrieve/pii/S0006899312004003
23 Chang Y.-K., Liu S., Yu H.-H., & Lee Y.-H . ( 2012). Effect of acute exercise on executive function in children with attention deficit hyperactivity disorder. Archives of Clinical Neuropsychology, 27( 2), 225-237.
url: https://academic.oup.com/acn/article-lookup/doi/10.1093/arclin/acr094
24 Chang Y-K., Chi L., Etnier J. L., Wang C.-C., Chu C.-H., & Zhou C . ( 2014). Effect of acute aerobic exercise on cognitive performance: Role of cardiovascular fitness. Psychology of Sport and Exercise, 15( 5), 464-470.
url: https://linkinghub.elsevier.com/retrieve/pii/S1469029214000545
25 Chang Y. K., Chu C. H., Wang C. C., Song T. F., & Wei G. X . ( 2015). Effect of acute exercise and cardiovascular fitness on cognitive function: An event-related cortical desynchronization study. Psychophysiology, 52( 3), 342-351.
url: http://doi.wiley.com/10.1111/psyp.12364
26 Chen A.-G., Yan J., Yin H.-C., Pan C.-Y., & Chang Y.-K . ( 2014). Effects of acute aerobic exercise on multiple aspects of executive function in preadolescent children. Psychology of Sport and Exercise, 15( 6), 627-636.
url: https://linkinghub.elsevier.com/retrieve/pii/S1469029214000818
27 Chmura, J., & Nazar, K . ( 2010). Parallel changes in the onset of blood lactate accumulation (OBLA) and threshold of psychomotor performance deterioration during incremental exercise after training in athletes. International Journal of Psychophysiology, 75( 3), 287-290.
url: https://linkinghub.elsevier.com/retrieve/pii/S0167876010000024
28 Cirulli F., Berry A., Chiarotti F., & Alleva E . ( 2004). Intrahippocampal administration of BDNF in adult rats affects short-term behavioral plasticity in the Morris water maze and performance in the elevated plus-maze. Hippocampus, 14( 7), 802-807.
url: http://doi.wiley.com/10.1002/%28ISSN%291098-1063
29 Colcombe S. J., Erickson K. I., Scalf P. E., Kim J. S., Prakash R., McAuley E., .. Kramer A. F . ( 2006). Aerobic exercise training increases brain volume in aging humans. The Journals of Gerontology Series A: Biological Sciences and Medical Sciences, 61( 11), 1166-1170.
url: https://academic.oup.com/biomedgerontology/article-lookup/doi/10.1093/gerona/61.11.1166
30 Cooper, C. J . ( 1973). Anatomical and physiological mechanisms of arousal, with special reference to the effects of exercise. Ergonomics, 16( 5), 601-609.
url: http://www.tandfonline.com/doi/abs/10.1080/00140137308924551
31 Córdova C., Silva V. C., Moraes C. F., Simões H. G., & Nóbrega O. T . ( 2009). Acute exercise performed close to the anaerobic threshold improves cognitive performance in elderly females. Brazilian Journal of Medical and Biological Research, 42( 5), 458-464.
url: http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0100-879X2009000500010&lng=en&tlng=en
32 Davey, C. P . ( 1973). Physical exertion and mental performance. Ergonomics, 16( 5), 595-599.
url: http://www.tandfonline.com/doi/abs/10.1080/00140137308924550
33 Davranche, K., & Audiffren, M . ( 2004). Facilitating effects of exercise on information processing. Journal of Sports Sciences, 22( 5), 419-428.
url: http://www.tandfonline.com/doi/abs/10.1080/02640410410001675289
34 Davranche K., Brisswalter J., & Radel R . ( 2015). Where are the limits of the effects of exercise intensity on cognitive control? Journal of Sport and Health Science, 4( 1), 56-63.
url: https://linkinghub.elsevier.com/retrieve/pii/S2095254614001215
35 Davranche K., Burle B., Audiffren M., & Hasbroucq T . ( 2005). Information processing during physical exercise: A chronometric and electromyographic study. Experimental Brain Research, 165( 4), 532-540.
url: http://link.springer.com/10.1007/s00221-005-2331-9
36 Davranche K., Burle B., Audiffren M., & Hasbroucq T . ( 2006). Physical exercise facilitates motor processes in simple reaction time performance: An electromyographic analysis. Neuroscience Letters, 396( 1), 54-56.
url: https://linkinghub.elsevier.com/retrieve/pii/S030439400501284X
37 Davranche K., Hall B., & McMorris T . ( 2009). Effect of acute exercise on cognitive control required during an Eriksen flanker task. Journal of Sport & Exercise Psychology, 31( 5), 628-639.
pmid: 20016112 url: http://www.cabdirect.org/abstracts/20093320243.html
38 Davranche, K., & McMorris, T . ( 2009). Specific effects of acute moderate exercise on cognitive control. Brain and Cognition, 69( 3), 565-570.
url: https://linkinghub.elsevier.com/retrieve/pii/S0278262608003291
39 Davranche, K., & Pichon, A . ( 2005). Critical flicker frequency threshold increment after an exhausting exercise. Journal of Sport and Exercise Psychology, 27( 4), 515-520.
url: http://dx.doi.org/10.1123/jsep.27.4.515
40 Dienes, Z., & Perner, J . ( 1999). A theory of implicit and explicit knowledge. Behavioral and Brain Sciences, 22( 5), 735-808.
url: https://www.cambridge.org/core/product/identifier/S0140525X99002186/type/journal_article
41 Dietrich, A. ( 2003). Functional neuroanatomy of altered states of consciousness: The transient hypofrontality hypothesis. Consciousness and Cognition, 12( 2), 231-256.
url: https://linkinghub.elsevier.com/retrieve/pii/S1053810002000466
42 Dietrich, A., & Audiffren, M . ( 2011). The reticular- activating hypofrontality (RAH) model of acute exercise. Neuroscience & Biobehavioral Reviews, 35( 6), 1305-1325.
url: http://dx.doi.org/science
43 Dietrich, A., & Sparling, P. B . ( 2004). Endurance exercise selectively impairs prefrontal-dependent cognition. Brain and Cognition, 55( 3), 516-524.
url: https://linkinghub.elsevier.com/retrieve/pii/S0278262604001137
44 Drollette E. S., Scudder M. R., Raine L. B., Moore R. D., Saliba B. J., Pontifex M. B., & Hillman C. H . ( 2014). Acute exercise facilitates brain function and cognition in children who need it most: An ERP study of individual differences in inhibitory control capacity. Developmental Cognitive Neuroscience, 7, 53-64.
url: https://linkinghub.elsevier.com/retrieve/pii/S1878929313000911
45 Eich, T. S., & Metcalfe, J . ( 2009). Effects of the stress of marathon running on implicit and explicit memory. Psychonomic Bulletin & Review, 16( 3), 475-479.
url: http://dx.doi.org/onomic Bulletin
46 Ekkekakis P., Parfitt G., & Petruzzello S. J . ( 2011). The pleasure and displeasure people feel when they exercise at different intensities: Decennial update and progress towards a tripartite rationale for exercise intensity prescription. Sports Medicine, 41( 8), 641-671.
url: http://link.springer.com/10.2165/11590680-000000000-00000
47 Erickson K. I., Prakash R. S., Voss M. W., Chaddock L., Heo S., McLaren M., .. Kramer A. F . ( 2010). Brain-derived neurotrophic factor is associated with age-related decline in hippocampal volume. The Journal of Neuroscience, 30( 15), 5368-5375.
url: http://www.jneurosci.org/cgi/doi/10.1523/JNEUROSCI.6251-09.2010
48 Etnier J. L., Wideman L., Labban J. D., Piepmeier A. T., Pendleton D. M., Dvorak K. K., & Becofsky K . ( 2016). The effects of acute exercise on memory and brain-derived neurotrophic factor (BDNF). Journal of Sport and Exercise Psychology, 38( 4), 331-340.
url: http://journals.humankinetics.com/doi/10.1123/jsep.2015-0335
49 Fryer S., Hillier S., Dickson T., Draper N., Stoner L., Winter D., .. Cohen L . ( 2012). Capillary cortisol sampling during high-intensity exercise. International Journal of Sports Medicine, 33( 10), 842-845.
url: http://www.thieme-connect.de/ejournals/journal/10.1055/s-00000028
50 Gapin J. I., Labban J. D., Bohall S. C., Wooten J. S., & Chang Y.-K . ( 2015). Acute exercise is associated with specific executive functions in college students with ADHD: A preliminary study. Journal of Sport and Health Science, 4( 1), 89-96.
url: https://linkinghub.elsevier.com/retrieve/pii/S2095254614001252
51 Goekint M., Heyman E., Roelands B., Njemini R., Bautmans I., Mets T., & Meeusen R . ( 2008). No influence of noradrenaline manipulation on acute exercise-induced increase of brain-derived neurotrophic factor. Medicine and Science in Sports and Exercise, 40( 11), 1990-1996.
url: https://insights.ovid.com/crossref?an=00005768-200811000-00017
52 Gothe N., Pontifex M. B., Hillman C., & McAuley E . ( 2013). The acute effects of Yoga on executive function. Journal of Physical Activity and Health, 10( 4), 488-495.
url: http://journals.humankinetics.com/doi/10.1123/jpah.10.4.488
53 Griffin é. W., Mullally S., Foley C., Warmington S. A., O'Mara S. M., & Kelly á. M . ( 2011). Aerobic exercise improves hippocampal function and increases BDNF in the serum of young adult males. Physiology & Behavior, 104( 5), 934-941.
pmid: 21722657 url: http://www.sciencedirect.com/science/article/pii/S0031938411003088
54 Gunnell D., Miller L. L., Rogers I., & Holly J. M . ( 2005). Association of insulin-like growth factor I and insulin-like growth factor-binding protein-3 with intelligence quotient among 8- to 9-Year-old children in the Avon longitudinal study of parents and children. Pediatrics, 116( 5), e681-e686.
pmid: 16263982 url: http://pediatrics.aappublications.org/cgi/doi/10.1542/peds.2004-2390
55 Haskell W. L., Lee I. M., Pate R. R., Powell K. E., Blair S. N., Franklin B. A., .. Bauman A . ( 2007). Physical activity and public health: Updated recommendation for adults from the american college of sports medicine and the american heart association. Medicine and Science in Sports and Exercise, 39( 8), 1423-1434.
url: https://insights.ovid.com/crossref?an=00005768-200708000-00027
56 Hatzigeorgiadis A., Pappa V., Tsiami A., Tzatzaki T., Georgakouli K., Zourbanos N., .. Theodorakis Y . ( 2016). Self-regulation strategies may enhance the acute effect of exercise on smoking delay. Addictive Behaviors, 57, 35-37.
url: https://linkinghub.elsevier.com/retrieve/pii/S0306460316300211
57 Hillman C. H., Erickson K. I., & Kramer A. F . ( 2008). Be Smart, exercise your heart: Exercise effects on brain and cognition. Nature Reviews Neuroscience, 9( 1), 58-65.
url: http://dx.doi.org/10.1038/nrn2298
58 Hillman C. H., Snook E. M., & Jerome G. J . ( 2003). Acute cardiovascular exercise and executive control function. International Journal of Psychophysiology, 48( 3), 307-314.
url: https://linkinghub.elsevier.com/retrieve/pii/S0167876003000801
59 Hogan M., Kiefer M., Kubesch S., Collins P., Kilmartin L., & Brosnan M . ( 2013). The interactive effects of physical fitness and acute aerobic exercise on electrophysiological coherence and cognitive performance in adolescents. Experimental Brain Research, 229( 1), 85-96.
url: http://link.springer.com/10.1007/s00221-013-3595-0
60 Hötting K., Schickert N., Kaiser J., Röder B., & Schmidt-Kassow M . ( 2016). The effects of acute physical exercise on memory, peripheral BDNF, and Cortisol in Young Adults. Neural Plasticity, 2016( 3), 1-12.
61 Hung T.-M., Tsai C.-l., Chen F.-T., Wang C.-C., & Chang Y.-K . ( 2013). The immediate and sustained effects of acute exercise on planning aspect of executive function. Psychology of Sport and Exercise, 14( 5), 728-736.
url: https://linkinghub.elsevier.com/retrieve/pii/S1469029213000538
62 Jäger K., Schmidt M., Conzelmann A., & Roebers C. M . ( 2014). Cognitive and physiological effects of an acute physical activity intervention in elementary school children. Front Psychol, 5, 1473-1473.
63 Kamijo K., Hayashi Y., Sakai T., Yahiro T., Tanaka K., & Nishihira Y . ( 2009). Acute effects of aerobic exercise on cognitive function in older adults. Journals of Gerontology Series B-psychological Sciences and Social Sciences, 64( 3), 356-363.
64 Kamijo K., Nishihira Y., Hatta A., Kaneda T., Kida T., Higashiura T., & Kuroiwa K . ( 2004). Changes in arousal level by differential exercise intensity. Clinical Neurophysiology, 115( 12), 2693-2698.
url: https://linkinghub.elsevier.com/retrieve/pii/S1388245704002573
65 Kamijo K., Nishihira Y., Higashiura T., & Kuroiwa K . ( 2007). The interactive effect of exercise intensity and task difficulty on human cognitive processing. International Journal of Psychophysiology, 65( 2), 114-121.
url: https://linkinghub.elsevier.com/retrieve/pii/S0167876007000694
66 Kashihara K., Maruyama T., Murota M., & Nakahara Y . ( 2009). Positive effects of acute and moderate physical exercise on cognitive function. Journal of Physiological Anthropology, 28( 4), 155-164.
url: http://joi.jlc.jst.go.jp/JST.JSTAGE/jpa2/28.155?from=CrossRef
67 Kerr J., Anderson C., & Lippman S. M . ( 2017). Physical activity, sedentary behaviour, diet, and cancer: An update and emerging new evidence. The Lancet Oncology, 18( 8), 457-471.
url: https://linkinghub.elsevier.com/retrieve/pii/S1470204517304114
68 Knaepen K., Goekint M., Heyman E. M., & Meeusen R . ( 2010). Neuroplasticity—exercise-induced response of peripheral brain-derived neurotrophic factor. Sports Medicine, 40( 9), 765-801.
url: http://link.springer.com/10.2165/11534530-000000000-00000
69 Kohl H. W., Craig C. L., Lambert E. V., Inoue S., Alkandari J. R., Leetongin G., & Kahlmeier S . ( 2012). The pandemic of physical inactivity: global action for public health. The Lancet, 380( 9838), 294-305.
url: https://linkinghub.elsevier.com/retrieve/pii/S0140673612608988
70 Labban, J. D., & Etnier, J. L . ( 2011). Effects of acute exercise on long-term memory. Research Quarterly for Exercise and Sport, 82( 4), 712-721.
url: http://www.tandfonline.com/doi/abs/10.1080/02701367.2011.10599808
71 Lambourne K., Audiffren M., & Tomporowski P. D . ( 2009). Effects of acute exercise on sensory and executive processing tasks. Medicine and Science in Sports and Exercise, 42( 7), 1396-1402.
72 Lambourne, K., & Tomporowski, P . ( 2010). The effect of exercise-induced arousal on cognitive task performance: A meta-regression analysis. Brain Research, 53( 11), 1611-1626.
73 Lear S. A., Hu W., Rangarajan S., Gasevic D., Leong D., Iqbal R., .. Yusuf S . ( 2017). The effect of physical activity on mortality and cardiovascular disease in 130 000 people from 17 high-income, middle-income, and low-income countries: the PURE study. The Lancet, 390( 10113), 2643-2654.
url: https://linkinghub.elsevier.com/retrieve/pii/S0140673617316343
74 Li F., Harmer P., Fitzgerald K., Eckstrom E., Stock R., Galver J. W., .. Batya S. S . ( 2012). Tai Chi and postural stability in patients with Parkinson's disease. The New England Journal of Medicine, 366( 6), 511-519.
url: http://www.nejm.org/doi/abs/10.1056/NEJMoa1107911
75 Licht T., Goshen I., Avital A., Kreisel T., Zubedat S., Eavri R., .. Keshet E . ( 2011). Reversible modulations of neuronal plasticity by VEGF. Proceedings of the National Academy of Sciences of the United States of America, 108( 12), 5081-5086.
url: http://www.pnas.org/cgi/doi/10.1073/pnas.1007640108
76 Loprinzi P. D., Herod S. M., Cardinal B. J., & Noakes T. D . ( 2013). Physical activity and the brain: A review of this dynamic, bi-directional relationship. Brain Research, 1539, 95-104.
url: https://linkinghub.elsevier.com/retrieve/pii/S0006899313013401
77 Loprinzi, P. D., & Kane, C. J . ( 2015). Exercise and cognitive function: a randomized controlled trial examining acute exercise and free-living physical activity and sedentary effects. Mayo Clinic Proceedings, 90( 4), 450-460.
url: https://linkinghub.elsevier.com/retrieve/pii/S002561961500052X
78 Ludyga S., Gerber M., Brand S., Holsboer-Trachsler E., & Pühse U . ( 2016). Acute effects of moderate aerobic exercise on specific aspects of executive function in different age and fitness groups: A meta-analysis. Psychophysiology, 53( 11), 1611-1626.
url: http://doi.wiley.com/10.1111/psyp.2016.53.issue-11
79 Ludyga S., Gronwald T., & Hottenrott K . ( 2015). The athlete’s brain: cross-sectional evidence for neural efficiency during cycling exercise. Neural Plasticity, 2016( 2), 1-7.
80 Maltais D. B., Gane C., Dufour S.-K., Wyss D., Bouyer L. J., McFadyen B. J., .. Voisin J. I . ( 2016). Acute physical exercise affects cognitive functioning in children with cerebral palsy. Pediatric Exercise Science, 28( 2), 304-311.
url: http://journals.humankinetics.com/doi/10.1123/pes.2015-0110
81 Martin A., Booth J. N., Laird Y., Sproule J., Reilly J. J., & Saunders D. H . ( 2018). Physical activity, diet and other behavioural interventions for improving cognition and school achievement in children and adolescents with obesity or overweight. Cochrane Database of Systematic Reviews( 3).
82 McMorris, T. ( 2016). Developing the catecholamines hypothesis for the acute exercise-cognition interaction in humans: Lessons from animal studies. Physiology & Behavior, 165( 1), 291-299.
url: http://dx.doi.org/ology
83 McMorris T., Collard K., Corbett J., Dicks M., & Swain J. P . ( 2008). A test of the catecholamines hypothesis for an acute exercise-cognition interaction. Pharmacology Biochemistry and Behavior, 89( 1), 106-115.
url: https://linkinghub.elsevier.com/retrieve/pii/S0091305707003498
84 McMorris, T., & Hale, B. J . ( 2012). Differential effects of differing intensities of acute exercise on speed and accuracy of cognition: A meta-analytical investigation. Brain and Cognition, 80( 3), 338-351.
url: https://linkinghub.elsevier.com/retrieve/pii/S0278262612001224
85 McMorris T., Sproule J., Turner A., & Hale B. J . ( 2011). Acute, intermediate intensity exercise, and speed and accuracy in working memory tasks: A meta-analytical comparison of effects. Physiology & Behavior, 102( 3-4), 421-428.
url: http://dx.doi.org/ology
86 McMorris, T., Turner, A., Hale, B. J., & Sproule, J .( 2016) . Chapter 4-beyond the catecholamines hypothesis for an acute exercise- cognition interaction: A neurochemical perspective. In Exercise-Cognition Interaction (pp. 65-103). San Diego: Academic Press.
87 McNerney, M. W., & Radvansky, G. A . ( 2015). Mind racing: The influence of exercise on long-term memory consolidation. Memory, 23( 8), 1140-1151.
url: http://www.tandfonline.com/doi/full/10.1080/09658211.2014.962545
88 Meeusen, R., & de Meirleir, K . ( 1995). Exercise and Brain Neurotransmission. Sports Medicine, 20( 3), 160-188.
url: http://link.springer.com/10.2165/00007256-199520030-00004
89 Meeusen R., Smolders I., Sarre S., de Meirleir K., Keizer H., Serneels M., .. Michotte Y . ( 1997). Endurance training effects on neurotransmitter release in rat striatum: An in vivo microdialysis study. Acta Physiologica Scandinavica, 159( 4), 335-341.
url: https://onlinelibrary.wiley.com/doi/abs/10.1046/j.1365-201X.1997.00118.x
90 Meeusen R., Watson P., Hasegawa H., Roelands B., & Piacentini M. F . ( 2006). Central fatigue: The serotonin hypothesis and beyond. Sports Medicine, 36( 10), 881-909.
url: http://link.springer.com/10.2165/00007256-200636100-00006
91 Moxon K. A., Devilbiss D. M., Chapin J. K., & Waterhouse B. D . ( 2007). Influence of norepinephrine on somatosensory neuronal responses in the rat thalamus: A combined modeling and in vivo multi-channel, multi- neuron recording study. Brain Research, 1147, 105-123.
url: https://linkinghub.elsevier.com/retrieve/pii/S0006899307003344
92 Mu J.-S., Li W.-P., Yao Z.-B., & Zhou X.-F . ( 1999). Deprivation of endogenous brain-derived neurotrophic factor results in impairment of spatial learning and memory in adult rats. Brain Research, 835( 2), 259-265.
url: https://linkinghub.elsevier.com/retrieve/pii/S0006899399015929
93 Netz Y., Argov E., & Inbar O . ( 2009). Fitness’s moderation of the facilitative effect of acute exercise on cognitive flexibility in older women. Journal of Aging and Physical Activity, 17( 2), 154-166.
url: http://journals.humankinetics.com/doi/10.1123/japa.17.2.154
94 Ogoh, S., & Ainslie, P. N . ( 2009). Cerebral blood flow during exercise: Mechanisms of regulation. Journal of Applied Physiology, 107( 5), 1370-1380.
url: http://www.physiology.org/doi/10.1152/japplphysiol.00573.2009
95 Piepmeier, A. T., & Etnier, J. L . ( 2014). Brain-derived neurotrophic factor (BDNF) as a potential mechanism of the effects of acute exercise on cognitive performance. Journal of Sport and Health Science, 4(1), 14-23.
96 Piepmeier A. T., Shih C.-H., Whedon M., Williams L., Davis M., Henning D., .. Etnier J. L . ( 2015). The effect of acute exercise on cognitive performance in children with and without ADHD. Journal of Sport and Health Science, 4( 1), 97-104.
url: https://linkinghub.elsevier.com/retrieve/pii/S2095254614001264
97 Pindus D. M., Drollette E. S., Scudder M. R., Khan N. A., Raine L. B., Sherar L. B., .. Hillman C. H . ( 2016). Moderate-to-vigorous physical activity, indices of cognitive control, and academic achievement in preadolescents. The Journal of Pediatrics, 173, 136-142.
url: https://linkinghub.elsevier.com/retrieve/pii/S0022347616002675
98 Pontifex M. B., Hillman C. H., Fernhall B., Thompson K. M., & Valentini T. A . ( 2009). The effect of acute aerobic and resistance exercise on working memory. Medicine Science in Sports Exercise, 41( 4), 927-934.
url: https://insights.ovid.com/crossref?an=00005768-200904000-00024
99 Prakash R. S., Voss M. W., Erickson K. I., & Kramer A. F . ( 2015). Physical activity and cognitive vitality. Annual Review of Psychology, 66(1), 769-797.
url: http://www.annualreviews.org/doi/10.1146/annurev-psych-010814-015249
100 Pratt J. A., Winchester C. L., Egerton A., Cochran S. M., & Morris B. J . ( 2008). Modelling prefrontal cortex deficits in schizophrenia: Implications for treatment. British Journal of Pharmacology, 153( S1), S465-S470.
101 Querido, J. S., & Sheel, A. W . ( 2007). Regulation of cerebral blood flow during exercise. Sports Medicine, 37( 9), 765-782.
url: http://link.springer.com/10.2165/00007256-200737090-00002
102 Raine L. B., Lee H. K., Saliba B. J., Chaddock L., Hillman C. H., & Kramer A. F . ( 2013). The influence of childhood aerobic fitness on learning and memory. PLoS One, 8( 9), e72666.
url: http://dx.plos.org/10.1371/journal.pone.0072666
103 Reed, J., & Ones, D. S . ( 2006). The effect of acute aerobic exercise on positive activated affect: A meta-analysis. Psychology of Sport and Exercise, 7( 5), 477-514.
url: https://linkinghub.elsevier.com/retrieve/pii/S1469029206000069
104 Robbins, T. W., & Everitt, B. J . ( 2007). A role for mesencephalic dopamine in activation: Commentary on Berridge (2006). Psychopharmacology, 191( 3), 433-437.
url: http://link.springer.com/10.1007/s00213-006-0528-7
105 Roig M., Nordbrandt S., Geertsen S. S., & Nielsen J. B . ( 2013). The effects of cardiovascular exercise on human memory: A review with meta-analysis. Neuroscience & Biobehavioral Reviews, 37( 8), 1645-1666.
url: http://dx.doi.org/science
106 Roig M., Skriver K., Lundbye-jensen J., Kiens B., & Nielsen J. B . ( 2012). A single bout of exercise improves motor memory. PLoS One, 7( 9), e44594.
url: https://dx.plos.org/10.1371/journal.pone.0044594
107 Rooks C. R., Thom N. J., McCully K. K., & Dishman R. K . ( 2010). Effects of incremental exercise on cerebral oxygenation measured by near-infrared spectroscopy: A systematic review. Progress in Neurobiology, 92( 2), 134-150.
url: https://linkinghub.elsevier.com/retrieve/pii/S0301008210001140
108 Sandroff B. M., Hillman C. H., Benedict R. H. B., & Motl R. W . ( 2015). Acute effects of walking, cycling, and yoga exercise on cognition in persons with relapsing-remitting multiple sclerosis without impaired cognitive processing speed. Journal of Clinical and Experimental Neuropsychology, 37( 2), 209-219.
url: http://www.tandfonline.com/doi/abs/10.1080/13803395.2014.1001723
109 Schmidt-Kassow M., Schädle S., Otterbein S., Thiel C., Doehring A., Lötsch J., & Kaiser J . ( 2012). Kinetics of serum brain-derived neurotrophic factor following low-intensity versus high-intensity exercise in men and women. NeuroReport, 23( 15), 889-893.
url: http://content.wkhealth.com/linkback/openurl?sid=WKPTLP:landingpage&an=00001756-201210240-00005
110 Schmit C., Davranche K., Easthope C. S., Colson S. S., Brisswalter J., & Radel R . ( 2015). Pushing to the limits: The dynamics of cognitive control during exhausting exercise. Neuropsychologia, 68( 0), 71-81.
url: https://linkinghub.elsevier.com/retrieve/pii/S0028393215000135
111 Secher N. H., Seifert T., & Van Lieshout, J. J . ( 2007). Cerebral blood flow and metabolism during exercise: Implications for fatigue. Journal of Applied Physiology, 104( 1), 306-314.
112 Segal S. K., Cotman C. W., & Cahill L. F . ( 2012). Exercise-induced noradrenergic activation enhances memory consolidation in both normal aging and patients with amnestic mild cognitive impairment. Journal of Alzheimer's Disease, 32( 4), 1011-1018.
url: http://www.medra.org/servlet/aliasResolver?alias=iospress&doi=10.3233/JAD-2012-121078
113 Soga K., Shishido T., & Nagatomi R . ( 2015). Executive function during and after acute moderate aerobic exercise in adolescents. Psychology of Sport and Exercise, 16, 7-17.
url: https://linkinghub.elsevier.com/retrieve/pii/S1469029214001174
114 Tempest G. D., Davranche K., Brisswalter J., Perrey S., & Radel R . ( 2017). The differential effects of prolonged exercise upon executive function and cerebral oxygenation. Brain and Cognition, 113( Suppl. C), 133-141.
url: https://linkinghub.elsevier.com/retrieve/pii/S0278262616301932
115 Themanson, J. R., & Hillman, C. H . ( 2006). Cardiorespiratory fitness and acute aerobic exercise effects on neuroelectric and behavioral measures of action monitoring. Neuroscience, 141( 2), 757-767.
url: https://linkinghub.elsevier.com/retrieve/pii/S0306452206004866
116 Thomas R., Beck M. M., Lind R. R., Johnsen L., Geertsen S. S., Christiansen L., .. Lundbye-jensen J . ( 2016). Acute exercise and motor memory consolidation: The role of exercise timing. Neural Plasticity, 2016, 6205452.
117 Thomas R., Johnsen L., Geertsen S. S., Christiansen L., Ritz C., Roig M., & Lundbye-jensen J . ( 2016). Acute exercise and motor memory consolidation: The role of exercise intensity. PLoS One, 11( 7), e0159589.
url: https://dx.plos.org/10.1371/journal.pone.0159589
118 Tomporowski, P. D . ( 2003). Effects of acute bouts of exercise on cognition. Acta Psychologica, 112( 3), 297-324.
pmid: 12595152 url: https://linkinghub.elsevier.com/retrieve/pii/S0001691802001348
119 Verburgh L., Königs M., Scherder E. J., & Oosterlaan J . ( 2013). Physical exercise and executive functions in preadolescent children, adolescents and young adults: A meta-analysis. British Journal of Sports Medicine, 48( 12), 973-979.
120 Weinberg L., Hasni A., Shinohara M., & Duarte A . ( 2014). A single bout of resistance exercise can enhance episodic memory performance. Acta Psychologica, 153, 13-19.
url: https://linkinghub.elsevier.com/retrieve/pii/S0001691814001577
121 Weng T. B., Pierce G. L., Darling W. G., & Voss M. W . ( 2015). Differential effects of acute exercise on distinct aspects of executive function. Medicine & Science in Sports & Exercise, 47( 7), 1460-1469.
url: http://dx.doi.org/ine
122 Wilson R. S., de Leon, C. F. M., Barnes L. L., Schneider J. A., Bienias J. L., Evans D. A., & Bennett D. A . ( 2002). Participation in cognitively stimulating activities and risk of incident Alzheimer disease. JAMA: Journal of the American Medical Association, 287( 6), 742-748.
url: http://jama.jamanetwork.com/article.aspx?doi=10.1001/jama.287.6.742
123 Winter B., Breitenstein C., Mooren F. C., Voelker K., Fobker M., Lechtermann A., .. Kneche S . ( 2007). High impact running improves learning. Neurobiology of Learning and Memory, 87( 4), 597-609.
url: https://linkinghub.elsevier.com/retrieve/pii/S1074742706001596
124 Yerkes, R. M., & Dodson, J. D . ( 1908). The relation of strength of stimulus to rapidity of habit-formation. Journal of Comparative Neurology, 18( 5), 459-482.
125 Young J., Angevaren M., Rusted J., & Tabet N . ( 2015). Aerobic exercise to improve cognitive function in older people without known cognitive impairment. Cochrane Database of Systematic Reviews (Online), 4( 4), CD005381.
[1] Dan KANG,Li ZENG. The relationship between early childhood mathematics learning and executive function[J]. Advances in Psychological Science, 2018, 26(9): 1661-1669.
[2] Hao JIANG. Reconfiguration and interference in voluntary task switching[J]. Advances in Psychological Science, 2018, 26(9): 1624-1631.
[3] LI Fangjun, ZHENG Fenfang, YANG Qianyi, WANG Shuman.  The consequential influence of employee voice behavior and its boundary conditions[J]. Advances in Psychological Science, 2018, 26(4): 710-718.
[4] Chen-Xi WANG,Tian-Yong CHEN,Bu-Xin HAN. Plasticity of the prefrontal cortex in old age and underlying mechanisms[J]. Advances in Psychological Science, 2018, 26(11): 2003-2012.
[5] LI Mingying, WU Huining, KUAI Shuguang, ZHANG Changxin.  Application of virtual reality technology in assessment of executive function[J]. Advances in Psychological Science, 2017, 25(6): 933-942.
[6] YANG Ling, WANG Sha, SU Bobo, LI Shaomei, CAO Hua.  The influencing mechanism of reward on executive function in heroin addicts[J]. Advances in Psychological Science, 2017, 25(11): 1888-1897.
[7] CHEN Jie, LIU Lei, WANG Rong, SHEN Haizhou.  The effect of musical training on executive functions[J]. Advances in Psychological Science, 2017, 25(11): 1854-1864.
[8] WANG Fuxing; LI Wenjing; XIE Heping; LIU Huashan. Is pedagogical agent in multimedia learning good for learning? A meta-analysis[J]. Advances in Psychological Science, 2017, 25(1): 12-28.
[9] GAO Shuang; ZHANG Xiangkui. A meta-analysis on effects of praise on children’s intrinsic motivation[J]. Advances in Psychological Science, 2016, 24(9): 1358-1367.
[10] WANG Tianyu; WANG Mingyi. Understanding the Effects of Sleep on Children’s Executive Functions[J]. Advances in Psychological Science, 2015, 23(9): 1560-1567.
[11] GAO Shuang; ZHANG Xiangkui; XU Xiaolin. A Meta-Analysis of the Relationship between Self-esteem and Mental Health: the Sample of Chinese College Students[J]. Advances in Psychological Science, 2015, 23(9): 1499-1507.
[12] NI Xudong; DAI Yanjun; YAO Chunxu; ZHANG Hong. Subgroup: Formation, Types, Intermediate Process and Influence[J]. Advances in Psychological Science, 2015, 23(3): 496-509.
[13] YI Xianlin; WANG Mingyi; WANG Xiaochun. The Relationship between Executive Functions and Pediatric Obesity Epidemic[J]. Advances in Psychological Science, 2015, 23(11): 1920-1930.
[14] WANG Xingchao;YANG Jiping;YANG Li. A Meta-Analysis of the Relationship between Moral Disengagement and Aggressive Behavior[J]. Advances in Psychological Science, 2014, 22(7): 1092-1102.
[15] ZHAO Xin;ZHOU Renlai. The Plasticity of Executive Function of Children[J]. Advances in Psychological Science, 2014, 22(2): 220-226.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
Copyright © Advances in Psychological Science
Support by Beijing Magtech