Please wait a minute...
Advances in Psychological Science    2018, Vol. 26 Issue (12) : 2141-2152     DOI: 10.3724/SP.J.1042.2018.02141
Regular Articles |
CHRM3 gene and autism spectrum disorder
Xingda JU1(),Wei SONG1,Jing XU2()
1. School of Psychology, Northeast Normal University, Changchun 130024, China
2. School of Clinical Medicine, Changchun University of Chinese Medicine, Changchun 130117, China
Download: PDF(646 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks     Supporting Info
Guide   
Abstract  

Autism Spectrum Disorder is one of the most complex developmental disorders with a strong genetic impact. In recent years, researchers have increasingly linked effects of central cholinergic system dysfunction to autism-related cognitive and behavioral abnormalities at the molecular pathological level. Results from autopsy studies, clinical cases and animal experiments revealed that aberrant muscarinic acetylcholine receptors have a strong relationship with autism. In behavioral studies using mouse models, the variations of CHRM3 gene, which encodes the muscarinic acetylcholine receptor subtype III receptor, can cause autistic phenotypes such as cognitive impairment and stereotypic behavior. Accordingly, in-depth functional understanding of CHRM3 gene may have important implications to further explain the characteristics and mechanisms of autistic behavior and may potentially provide new ideas and methods for the development of educational programs for autistic children.

Keywords autism spectrum disorder      CHRM3 gene      clinical features      animal models     
ZTFLH:  B845  
Corresponding Authors: Xingda JU,Jing XU     E-mail: juxd513@nenu.edu.cn;xuj391@nenu.edu.cn
Issue Date: 30 October 2018
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Xingda JU
Wei SONG
Jing XU
Cite this article:   
Xingda JU,Wei SONG,Jing XU. CHRM3 gene and autism spectrum disorder[J]. Advances in Psychological Science, 2018, 26(12): 2141-2152.
URL:  
http://journal.psych.ac.cn/xlkxjz/EN/10.3724/SP.J.1042.2018.02141     OR     http://journal.psych.ac.cn/xlkxjz/EN/Y2018/V26/I12/2141
突变类型 等位基因改变 氨基酸改变 遗传模式 参考文献
无义突变 c.1762C>T p.Gln588Ter 家系遗传 Li et al., (2017)
错义突变 c.1504A>G p.Ile502Val 新生突变 De Rubeis et al., (2014)
错义突变 c.1423A>T p.Ile475Phe 新生突变 Li et al. (2017)
缺失 新生突变 Perrone et al., (2012)
缺失 未知 Petersen AK et al., (2012)
  
  
特征 Perrone等人报道的患者 Andrea Klunder Petersen等人报道的患者
年龄、性别 7岁, 男 3岁7个月, 男
智力缺陷 + +
发育迟缓 + +
孤独症行为 + +
癫痫 - -
进食困难 + +
身材短小 + -
体重偏轻 + -
曲指 + -
斜视 + +
自伤倾向 + +
脑部核磁共振造影 正常 正常
社交退缩 + +
言语发育迟缓 + +
运动发育迟缓 + NA
  
  
1 Alexander G. M., Rogan S. C., Abbas A. I., Armbruster B. N., Pei Y., Allen J. A., … Roth B. L . ( 2009). Remote control of neuronal activity in transgenic mice expressing evolved g protein-coupled receptors. Neuron, 63( 1), 27-39.
pmid: 19607790 url: http://www.sciencedirect.com/science/article/pii/S089662730900467X
2 Amodeo D. A., Yi J., Sweeney J. A., & Ragozzino M. E . ( 2014). Oxotremorine treatment reduces repetitive behaviors in btbr t+ tf/j mice. Frontiers in Synaptic Neuroscience, 6( 17), 1-8
pmid: 25165445 url: http://pubmedcentralcanada.ca/pmcc/articles/PMC4131251/
3 Bailey A., Le Couteur A., Gottesman I., Bolton P., Simonoff E., Yuzda E., & Rutter M . ( 1995). Autism as a strongly genetic disorder: Evidence from a British twin study. Psychological Medicine, 25( 1), 63-77.
pmid: 7792363132 url: http://europepmc.org/abstract/MED/7792363
4 Beck, C.H., &Fibiger, H.C . ( 1995). Conditioned fear-induced changes in behavior and in the expression of the immediate early gene c-fos: With and without diazepam pretreatment. Journal of Neuroscience, 15( 1), 709-720.
pmid: 7823174 url: http://psycnet.apa.org/record/1995-32303-001
5 Bentley P., Vuilleumier P., Thiel C. M., Driver J., & Dolan R. J . ( 2003). Cholinergic enhancement modulates neural correlates of selective attention and emotional processing. Neuroimage, 20( 1), 58-70.
6 Bernier R., Golzio C., Xiong B., Stessman H. A., Coe B. P., Penn O., .. Eichler E. E . ( 2014). Disruptive CHD8 mutations define a subtype of autism early in development. Cell, 158( 2), 263-276.
pmid: 24998929 url: http://www.cell.com/abstract/S0092-8674(14)00749-1
7 Bolivar V. J., Walters S. R., & Phoenix J. L . ( 2007). Assessing autism-like behavior in mice: Variations in social interactions among inbred strains. Behavoural Brain Research, 176( 1), 21-26.
pmid: 1831820 url: http://europepmc.org/articles/PMC1831820
8 Bowen D. M., Smith C. B., White P., & Davison A. N . ( 1976). Neurotransmitter-related enzymes and indices of hypoxia in senile dementia and other abiotrophies. Brain, 99( 3), 459-496.
9 Butler M. G., Rafi S. K., & Manzardo A. M . ( 2015). High-resolution chromosome ideogram representation of currently recognized genes for autism spectrum disorders. International Journal of Molecular Science, 16( 3), 6464-6495.
pmid: 25803107 url: http://pubmedcentralcanada.ca/pmcc/articles/PMC4394543/
10 Buxbaum J. D., Silverman J. M., Smith C. J., Kilifarski M., Reichert J., Hollander E., .. Davis K. L . ( 2001). Evidence for a susceptibility gene for autism on chromosome 2 and for genetic heterogeneity. The American Journal of Human Genetics, 68( 6), 1514-1520.
pmid: 11353400 url: http://europepmc.org/abstract/med/11353400
11 Bymaster F. P., Carter P. A., Yamada M., Gomeza J., Wess J., Hamilton S. E., .. Felder C. C . ( 2003). Role of specific muscarinic receptor subtypes in cholinergic parasympathomimetic responses, in vivo phosphoinositide hydrolysis, and pilocarpine- induced seizure activity. European Journal Neuroscience, 17( 7), 1403-1410.
12 Carlezon Jr W. A., Duman R. S., & Nestler E. J . ( 2005). The many faces of CREB. Trends in Neuroscience, 28( 8), 436-445.
pmid: 15982754 url: http://www.biomedcentral.com/pubmed/15982754
13 Chan S. F., Huang X., McKercher S. R., Zaidi R., Okamoto S. I., Nakanishi N., & Lipton S. A . ( 2015). Transcriptional profiling of MEF2-regulated genes in human neural progenitor cells derived from embryonic stem cells. Genomics Data, 3(C), 24-27.
pmid: 4255278 url: http://www.sciencedirect.com/science/article/pii/S2213596014001111
14 Chen M., Wan Y., Ade K., Ting J., Feng G., & Calakos N . ( 2011). Sapap3 deletion anomalously activates short-term endocannabinoid-mediated synaptic plasticity. Journal of Neuroscience, 31( 26), 9563-9573.
pmid: 21715621 url: http://pubmedcentralcanada.ca/pmcc/articles/PMC3367431/
15 Ch'ng C., Kwok W., Rogic S., & Pavlidis P . ( 2015). Meta-analysis of gene expression in autism spectrum disorder. Autism Research, 8( 5), 593-608.
pmid: 25720351 url: http://pubmedcentralcanada.ca/pmcc/articles/PMC4933311/
16 Christensen D. L., Baio J., Van Naarden Braun K., Bilder D., Charles J., Constantino J. N., .. Yeargin-Allsopp M . ( 2016). Prevalence and characteristics of autism spectrum disorder among children aged 8 years--Autism and developmental disabilities monitoring network, 11 sites, United States, 2012. MMWR Surveillance Summaries, 65( 3), 1-23.
17 Crane L., Pring L., Jukes K., & Goddard L . ( 2012). Patterns of autobiographical memory in adults with autism spectrum disorder. Journal of Autism and Developmental Disorders, 42( 10), 2100-2112.
pmid: 22322581 url: http://europepmc.org/abstract/MED/22322581
18 Cuccaro M. L., Shao Y., Grubber J., Slifer M., Wolpert C. M., & Donnelly S. L ., et al. ( 2003). Factor analysis of restricted and repetitive behaviors in autism using the autism diagnostic interview-r. Child Psychiatry & Human Development, 34( 1), 3-17.
pmid: 14518620 url: http://link.springer.com/article/10.1023/A%3A1025321707947
19 Cupolillo D., Hoxha E., & Faralli A., De Luca A., Rossi F., Tempia F., & Carulli D ., ( 2015). Autistic-like traits and cerebellar dysfunction in Purkinje cell PTEN knock- out mice. . Neuropsychopharmacology, 41(6), 1457-1466.
pmid: 4832032 url: http://www.nature.com/articles/npp2015339
20 Dani, J.A., &Bertrand, D . ( 2007). Nicotinic acetylcholine receptors and nicotinic cholinergic mechanisms of the central nervous system. Annual Review of Pharmacology and Toxicology, 47(1), 699-729.
21 De Rubeis S., He X., Goldberg A. P., Poultney C. S., Samocha K., Cicek A. E., .. Buxbaum J. D . ( 2014). Synaptic, transcriptional and chromatin genes disrupted in autism. Nature, 515( 7526), 209-215.
pmid: 25363760 url: http://onlinelibrary.wiley.com/resolve/reference/PMED?id=25363760
22 Deng, Y.P., &Reiner, A . ( 2016). Cholinergic interneurons in the Q140 knockin mouse model of Huntington's disease: Reductions in dendritic branching and thalamostriatal input. The Journal of Comparative Neurology, 524( 17), 3518-3529.
23 Deutsch S. I., Urbano M. R., Neumann S. A., Burket J. A., & Katz E . ( 2010). Cholinergic abnormalities in autism: Is there a rationale for selective nicotinic agonist interventions? Clinical Neuropharmacology, 33( 3), 114-120.
pmid: 20190638 url: http://www.ncbi.nlm.nih.gov/pubmed/20190638
24 Devor A., Andreassen O. A., Wang Y., Mäki-Marttunen T., Smeland O. B., Fan C. C., .. Dale A. M . ( 2017). Genetic evidence for role of integration of fast and slow neurotransmission in schizophrenia. Molecular Psychiatry, 22( 6), 792-801.
pmid: 28348379 url: http://europepmc.org/abstract/MED/28348379
25 Dineley K. T., Pandya A. A., & Yakel J. L . ( 2015). Nicotinic ACh receptors as therapeutic targets in CNS disorders. Trends in Pharmacological Sciences, 36( 2), 96-108.
pmid: 4324614 url: http://europepmc.org/abstract/med/25639674
26 Donato F., Chowdhury A., Lahr M., & Caroni P . ( 2015). Early- and late-born parvalbumin basket cell subpopulations exhibiting distinct regulation and roles in learning. Neuron, 85( 4), 770-786.
pmid: 25695271 url: http://www.sciencedirect.com/science/article/pii/S0896627315000379
27 Durand C. M., Betancur C., Boeckers T. M., Bockmann J., Chaste P., Fauchereau F., .. Bourgeron T . ( 2007). Mutations in the gene encoding the synaptic scaffolding protein SHANK3 are associated with autism spectrum disorders. Nature Genetic, 39( 1), 25-27.
pmid: 2017173049 url: http://europepmc.org/articles/PMC2082049/
28 Forrest M. P., Waite A. J., Martin-Rendon E., & Blake D. J . ( 2013). Knockdown of human TCF4 affects multiple signaling pathways involved in cell survival, epithelial to mesenchymal transition and neuronal differentiation. PLoS ONE, 8( 8), e73169.
pmid: 3751932 url: http://www.ncbi.nlm.nih.gov/pubmed/24058414
29 Friedman S. D., Shaw D. W. W., Artru A. A., Dawson G., Petropoulos H., & Dager S. R . ( 2006). Gray and white matter brain chemistry in young children with autism. Archives of General Psychiatry, 63( 7), 786-794.
30 Gai X., Xie H. M., Perin J. C., Takahashi N., Murphy K., Wenocur A. S., .. White P. S . ( 2012). Rare structural variation of synapse and neurotransmission genes in autism. Molecular Psychiatry, 17( 4), 402-411.
pmid: 21358714 url: http://pubmedcentralcanada.ca/pmcc/articles/PMC3314176/
31 Gao Z., Lee P., Stafford J. M., von Schimmelmann M., Schaefer A., & Reinberg D . ( 2014). An AUTS2-Polycomb complex activates gene expression in the CNS. Nature, 516( 7531), 349-354.
pmid: 25519132 url: http://europepmc.org/abstract/med/25519132
32 Gaugler T., Klei L., Sanders S. J., Bodea C. A., Goldberg A. P., Lee A. B., .. Buxbaum J. D . ( 2014). Most genetic risk for autism resides with common variation. Nature Genetics,46( 8), 881-885.
pmid: 25038753 url: http://pubmedcentralcanada.ca/pmcc/articles/PMC4137411/
33 Haglund, N. G.S., &Kallen, K. B.M . ( 2011). Risk factors for autism and Asperger syndrome. Perinatal factors and migration. Autism, 15( 2), 163-183.
pmid: 20923887 url: http://europepmc.org/abstract/med/20923887
34 Happe F., Ronald A., & Plomin R . ( 2006). Time to give up on a single explanation for autism. Nature Neuroscience, 9( 10), 1218-1220.
pmid: 17001340 url: http://www.nature.com/articles/nn1770
35 Hardan A. Y., Jou R. J., & Handen B. L . ( 2005). Retrospective study of quetiapine in children and adolescents with pervasive developmental disorders. Journal of Autism and Devlopment Disorders, 35( 3), 387-391.
pmid: 16119479 url: http://link.springer.com/10.1007/s10803-005-3306-1
36 Huguet G., Ey E., & Bourgeron T . ( 2013). The genetic landscapes of autism spectrum disorders. Annu Rev Genomics Human Genetics, 14( 1), 191-213.
pmid: 23875794 url: http://www.annualreviews.org/doi/pdf/10.1146/annurev-genom-091212-153431
37 Hussman J. P., Chung R. H., Griswold A. J., Jaworski J. M., Salyakina D., Ma D., .. Pericak-Vance M. A . ( 2011). A noise-reduction GWAS analysis implicates altered regulation of neurite outgrowth and guidance in autism. Molecular Autism, 2( 1), 1-16
pmid: 21247446 url: http://pubmedcentralcanada.ca/pmcc/articles/PMC3035032/
38 Karvat, G., &Kimchi, T . ( 2014). Acetylcholine elevation relieves cognitive rigidity and social deficiency in a mouse model of autism. Neuropsychopharmacology, 39( 4), 831-840.
pmid: 24096295 url: http://pubmedcentralcanada.ca/pmcc/articles/PMC3924518/
39 Kim J. W., Seung H., Kwon K. J., Ko M. J., Lee E. J., Oh H. A., .. Bahn G. H . ( 2014). Subchronic treatment of donepezil rescues impaired social, hyperactive, and stereotypic behavior in valproic acid-induced animal model of autism. PLoS ONE, 9( 8), e104927.
pmid: 25133713 url: http://pubmedcentralcanada.ca/pmcc/articles/PMC4136791/?lang=fr
40 King I. F., Yandava C. N., Mabb A. M., Hsiao J. S., Huang H. S., Pearson B. L., .. Zylka M. J . ( 2013). Topoisomerases facilitate transcription of long genes linked to autism. Nature, 501( 7465), 58-62.
pmid: 3767287 url: http://www.ncbi.nlm.nih.gov/pubmed/?term=23995680
41 Koeleman, B. P.C. ( 2018). What do genetic studies tell us about the heritable basis of common epilepsy? Polygenic or complex epilepsy? Neuroscience Letters, 667, 10-16.
pmid: 28347857 url: http://www.ncbi.nlm.nih.gov/pubmed/28347857/
42 Lee M., Martin-Ruiz C., Graham A., Court J., Jaros E., Perry R., .. Perry E . ( 2002). Nicotinic receptor abnormalities in the cerebellar cortex in autism. Brain, 125( Pt 7), 1483-1495.
pmid: 12076999 url: http://www.ncbi.nlm.nih.gov/pubmed/12076999
43 Levey A. I., Edmunds S. M., Heilman C. J., Desmond T. J., & Frey K. A . ( 1994). Localization of muscarinic m3 receptor protein and M3 receptor binding in rat brain. Neuroscience, 63( 1), 207-221.
pmid: 7898649 url: http://www.ncbi.nlm.nih.gov/pubmed/7898649
44 Levey A. I., Edmunds S. M., Koliatsos V., Wiley R. G., & Heilman C. J . ( 1995). Expression of m1-m4 muscarinic acetylcholine receptor proteins in rat hippocampus and regulation by cholinergic innervation. Journal of Neurosci, 15( 5), 4077-4092.
pmid: 7751967 url: http://europepmc.org/abstract/MED/7751967
45 Li J., Wang L., Guo H., Shi L., Zhang K., Tang M., .. Xia K . ( 2017). Targeted sequencing and functional analysis reveal brain-size-related genes and their networks in autism spectrum disorders. Molecular Psychiatry,22( 9), 1282-1290.
pmid: 28831199 url: http://www.nature.com/articles/mp2017140
46 Lonze, B.E., &Ginty, D.D . ( 2002). Function and regulation of CREB family transcription factors in the nervous system. Neuron, 35( 4), 605-623.
47 Luukkonen T. M., Mehrjouy M. M., Pöyhönen M., Anttonen A. K., Lahermo P., Ellonen P., .. Varilo T . ( 2017). Breakpoint mapping and haplotype analysis of translocation t(1;12) (q43;q21.1) in two apparently independent families with vascular phenotypes. Molecular Genetics & Genomic Medicine, 6( 1), 56-68.
pmid: 29168350 url: http://europepmc.org/abstract/MED/29168350
48 Maccarrone M., Rossi S., Bari M., De Chiara V., Rapino C., Musella A., .. Centonze D . ( 2010). Abnormal mGlu 5 receptor/endocannabinoid coupling in mice lacking FMRP and BC1 RNA. Neuropsychopharmacology, 35( 7), 1500-1509.
pmid: 20393458 url: http://pubmedcentralcanada.ca/pmcc/articles/PMC3055456/
49 Martin A., Koenig K., Scahill L., & Bregman J . ( 1999). Open-label quetiapine in the treatment of children and adolescents with autistic disorder. Journal of Child Adolesc Psychopharmacol, 9( 2), 99-107.
50 Martin-Ruiz C. M., Lee M., Perry R. H., Baumann M., Court J. A., & Perry E. K . ( 2004). Molecular analysis of nicotinic receptor expression in autism. Molecular Brain Research, 123( 1-2), 81-90.
pmid: 15046869 url: http://www.sciencedirect.com/science/article/pii/S0169328X0400035X
51 Matsui M., Araki Y., Karasawa H., Matsubara N., Taketo M. M., & Seldin M. F . ( 1999). Mapping of five subtype genes for muscarinic acetylcholine receptor to mouse chromosomes. Genes & Genetic Systems, 74( 1), 15-21.
pmid: 10549128 url: http://www.ncbi.nlm.nih.gov/pubmed/10549128
52 Matsui M., Motomura D., Karasawa H., Fujikawa T., Jiang J., Komiya Y., .. Taketo M. M . ( 2000). Multiple functional defects in peripheral autonomic organs in mice lacking muscarinic acetylcholine receptor gene for the M3 subtype. Proceedings of the National Academy of Sciences of the United States of America, 97( 17), 9579-9584.
url: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC16907/
53 McTighe S. M., Neal S. J., Lin Q., Hughes Z. A., & Smith D. G . ( 2013). The BTBR mouse model of autism spectrum disorders has learning and attentional impairments and alterations in acetylcholine and kynurenic acid in prefrontal cortex. PLoS ONE, 8( 4), e62189.
pmid: 3634761 url: http://pubmedcentralcanada.ca/pmcc/articles/PMC3634761/
54 Meyer L. R., Zhu V., Miller A., & Roghair R. D . ( 2014). Growth restriction, leptin, and the programming of adult behavior in mice. Behavioural Brain Research, 275, 131-135.
pmid: 4252372 url: http://europepmc.org/abstract/MED/25196633
55 Michaelson J. J., Shi Y. J., Gujral M., Zheng H. C., Malhotra D., Jin X., .. Sebat J . ( 2012). Whole-genome sequencing in autism identifies hot spots for de novo germline mutation. Cell, 151( 7), 1431-1442.
56 Mines M. A., Yuskaitis C. J., King M. K., Beurel E., & Jope R. S . ( 2010). GSK3 influences social preference and anxiety-related behaviors during social interaction in a mouse model of fragile X syndrome and autism. PLoS ONE, 5( 3), e9706.
pmid: 2838793 url: http://www.ncbi.nlm.nih.gov/pubmed/20300527
57 Moretti P., Levenson J. M., Battaglia F., Atkinson R., Teague R., Antalffy B., .. Zoghbi H. Y . ( 2006). Learning and memory and synaptic plasticity are impaired in a mouse model of Rett syndrome. Journal of Neuroscience, 26( 1), 319-327.
pmid: 16399702 url: http://europepmc.org/abstract/MED/16399702
58 Neale B. M., Kou Y., Liu L., Ma'ayan A., Samocha K. E., Sabo A., .. Daly M. J . ( 2012). Patterns and rates of exonic de novo mutations in autism spectrum disorders. Nature, 485( 7397), 242-245.
59 Nelson K. B., Grether J. K., Croen L. A., Dambrosia J. M., Dickens B. F., Jelliffe L. L., .. Phillips T. M . ( 2001). Neuropeptides and neurotrophins in neonatal blood of children with autism or mental retardation. Ann Neurol, 49( 5), 597-606.
pmid: 11357950 url: http://onlinelibrary.wiley.com/doi/10.1002/ana.1024/full
60 O'Connor E. C., Bariselli S., & Bellone C . ( 2014). Synaptic basis of social dysfunction: A focus on postsynaptic proteins linking group-I mGluRs with AMPARs and NMDARs. European Journal of Neuroscience, 39( 7), 1114-1129.
pmid: 24712991 url: http://europepmc.org/abstract/med/24712991
61 Okerlund, N.D., &Cheyette, B. N.R . ( 2011). Synaptic Wnt signaling-a contributor to major psychiatric disorders? Journal of Neurodevelopmental Disorders, 3( 2), 162-174.
pmid: 3180925 url: http://jneurodevdisorders.biomedcentral.com/articles/10.1007/s11689-011-9083-6
62 O'Roak B. J., Vives L., Fu W., Egertson J. D., Stanaway I. B., Phelps I. G., .. Shendure J . ( 2012). Multiplex targeted sequencing identifies recurrently mutated genes in autism spectrum disorders. Science, 338( 6114), 1619-1622.
pmid: 23160955 url: http://www.jstor.org/stable/23333709
63 O'Roak B. J., Vives L., Girirajan S., Karakoc E., Krumm N., Coe B. P., .. Eichler E. E . ( 2012). Sporadic autism exomes reveal a highly interconnected protein network of de novo mutations. Nature, 485( 7397), 246-250.
pmid: 22495309 url: http://www.nature.com/abstractpagefinder/10.1038/nature10989
64 Ozonoff S., Young G. S., Carter A., Messinger D., Yirmiya N., Zwaigenbaum L., .. Stone W. L . ( 2011). Recurrence risk for autism spectrum disorders: A baby siblings research consortium study. Pediatrics, 128( 3), e488-e495.
65 Perrone M. D., Rocca M. S., Bruno I., Faletra F., Pecile V., & Gasparini P . ( 2012). De novo 911 Kb interstitial deletion on chromosome 1q43 in a boy with mental retardation and short stature. European Journal of Medical Genetics, 55( 2), 117-119.
pmid: 22186213 url: http://www.sciencedirect.com/science/article/pii/S1769721211001248
66 Perry E. K., Lee M. L. W., Martin-Ruiz C. M., Court J. A., Volsen S. G., Merrit J., .. Wenk G. L . ( 2001). Cholinergic activity in autism: Abnormalities in the cerebral cortex and basal forebrain. American Journal of Psychiatry, 158( 7), 1058-1066.
pmid: 11431227 url: http://www.ncbi.nlm.nih.gov/pubmed/11431227
67 Petersen A. K., Ahmad A., Shafiq M., Brown-Kipphut B., Fong C. T., & Anwar Iqbal M . ( 2013). Deletion 1q43 encompassing only CHRM3 in a patient with autistic disorder. European Journal of Medical Genetics, 56( 2), 118-122.
pmid: 23253743 url: http://www.sciencedirect.com/science/article/pii/S1769721212003102
68 Pinto D., Delaby E., Merico D., Barbosa M., Merikangas A., Klei L., .. Scherer S. W . ( 2014). Convergence of genes and cellular pathways dysregulated in autism spectrum disorders. American Journal of Human Genetics, 94( 5), 677-694.
69 Pinto D., Pagnamenta A. T., Klei L., Regan R., Conroy J., Casey J., .. Ennis S . ( 2011). Functional impact of global rare copy number variation in autism spectrum disorders . American Academy of Child and Adolescent Psychiatry/ Canadian Academy of Child and Adolescent Psychiatry Joint Meeting, 466( 7304), 368-372.
70 Poulin B., Butcher A., McWilliams P., Bourgognon J. M., Pawlak R., Kong K. C., .. Tobin A. B . ( 2010). The M3-muscarinic receptor regulates learning and memory in a receptor phosphorylation/arrestin-dependent manner. Proceedings of the National Academy of Sciences of the United States of America, 107( 20), 9440-9445.
pmid: 20439723 url: http://www.ncbi.nlm.nih.gov/pubmed/20439723
71 Qu D., Ludwig D. S., Gammeltoft S., Piper M., Pelleymounter M. A., Cullen M. J., .. Maratos-Flier E . ( 1996). A role for melanin-concentrating hormone in the central regulation of feeding behaviour. Nature, 380( 6571), 243-247.
72 Ray M. A., Graham A. J., Lee M., Perry R. H., Court J. A., & Perry E. K . ( 2005). Neuronal nicotinic acetylcholine receptor subunits in autism: An immunohistochemical investigation in the thalamus. Neurobiology of Disease, 19( 3), 366-377.
pmid: 16023579 url: http://europepmc.org/abstract/med/16023579
73 Riikonen, R., &Vanhala, R . ( 1999). Levels of cerebrospinal fluid nerve-growth factor differ in infantile autism and Rett syndrome. Developmental Medicine & Child Neurology, 41( 3), 148-152.
pmid: 10210246 url: http://www.sciencedirect.com/science/article/pii/S109037989991019X
74 Rinaldo, L., &Hansel, C . ( 2013). Muscarinic acetylcholine receptor activation blocks long-term potentiation at cerebellar parallel fiber-Purkinje cell synapses via cannabinoid signaling. Proceedings of the National Academy of Sciences of the United States of America, 110( 27), 11181-11186.
url: http://europepmc.org/articles/PMC3704018/
75 Ronald A., Happe F., & Plomin R . ( 2005). The genetic relationship between individual differences in social and nonsocial behaviours characteristic of autism. Developmental Science, 8( 5), 444-458.
pmid: 16048517 url: http://onlinelibrary.wiley.com/doi/10.1111/j.1467-7687.2005.00433.x/full
76 Roohi J., Tegay D. H., Pomeroy J. C., Burkett S., Stone G., Stanyon R., & Hatchwell E . ( 2008). A de novo apparently balanced translocation [46,XY,t(2;9) (p13;p24)] interrupting RAB11FIP5 identifies a potential candidate gene for autism spectrum disorder. American Journal of Medical Genetics Part B Neuropsychiatr Genet, 147b(#4), 411-417.
pmid: 18384058 url: http://pubmedcentralcanada.ca/pmcc/articles/PMC4355399/
77 Rosenberg R. E., Law J. K., Yenokyan G., McGready J., Kaufmann W. E., & Law P. A . ( 2009). Characteristics and concordance of autism spectrum disorders among 277 twin pairs. Archives of Pediatrics & Adolescent Medicine, 163( 10), 907-914.
pmid: 19805709 url: http://europepmc.org/abstract/med/19805709
78 Rosethorne E. M., Nahorski S. R ., & Challiss, R. A. J. ( 2008). Regulation of cyclic AMP response-element binding-protein (CREB) by Gq/11-protein-coupled receptors in human SH-SY5Y neuroblastoma cells. Biochemical Pharmacology, 75( 4), 942-955.
pmid: 2593902 url: http://europepmc.org/articles/PMC2593902/
79 Sakai Y., Shaw C. A., Dawson B. C., Dugas D. V., Al-Mohtaseb Z., Hill D. E., & Zoghbi H. Y . ( 2011). Protein interactome reveals converging molecular pathways among autism disorders. Science Translational Medicine, 3( 86), 86ra49.
pmid: 21653829 url: http://europepmc.org/articles/PMC3169432/
80 Sanders S. J., He X., Willsey A. J., Ercan-Sencicek A. G., Samocha K. E., Cicek A. E., .. State M. W . ( 2015). Insights into autism spectrum disorder genomic architecture and biology from 71 risk loci. Neuron, 87( 6), 1215-1233.
pmid: 4624267 url: http://www.sciencedirect.com/science/article/pii/S0896627315007734
81 Sanders S. J., Murtha M. T., Gupta A. R., Murdoch J. D., Raubeson M. J., Willsey A. J., .. State M. W . ( 2012). De novo mutations revealed by whole-exome sequencing are strongly associated with autism. Nature, 485( 7397), 237-241.
82 Schaaf, C.P., &Zoghbi, H.Y . ( 2011). Solving the autism puzzle a few pieces at a time. Neuron, 70( 5), 806-808.
pmid: 21658575 url: http://europepmc.org/abstract/med/21658575
83 Cuccaro M. L., Shao Y., Grubber J., Slifer M., Wolpert C. M., & Donnelly S. L ., et al. ( 2003). Factor analysis of restricted and repetitive behaviors in autism using the autism diagnostic interview-r. Child Psychiatry & Human Development, 34(1), 3-17.
pmid: 14518620 url: http://link.springer.com/article/10.1023/A%3A1025321707947
84 Shimojima K., Okamoto N., Suzuki Y., Saito M., Mori M., Yamagata T., .. Yamamoto T . ( 2012). Subtelomeric deletions of 1q43q44 and severe brain impairment associated with delayed myelination. Journal of Human Genetics, 57( 9), 593-600.
pmid: 22718018 url: http://test.europepmc.org/abstract/MED/22718018
85 Silipigni R., Monfrini E., Baccarin M., Giangiobbe S., Lalatta F., Guerneri S., & Bedeschi M. F . ( 2017). Familial duplication/deletion of 1q42.13q43 as meiotic consequence of an intrachromosomal insertion in chromosome 1. Cytogenetic and Genome Research, 153( 2), 73-80.
pmid: 29258113 url: http://europepmc.org/abstract/MED/29258113
86 Silva A. J., Kogan J. H., Frankland P. W., & Kida S . ( 1998). CREB and memory. Annual Review of Neuroscience, 21( 1), 127-148.
87 Silverman J. L., Smith D. G., Rizzo S. J., Karras M. N., Turner S. M., Tolu S. S., .. Crawley J. N . ( 2012). Negative allosteric modulation of the mGluR5 receptor reduces repetitive behaviors and rescues social deficits in mouse models of autism. Science Translational Medicine, 4( 131), 131ra151.
88 Soueid J., Kourtian S., Makhoul N. J., Makoukji J., Haddad S., Ghanem S. S., .. Boustany R. M . ( 2016). RYR2, PTDSS1 and AREG genes are implicated in a Lebanese population- based study of copy number variation in autism. Scientific Reports, 6(2) 19088, 1-11
pmid: 26742492 url: http://www.nature.com/articles/srep19088
89 Spinelli L., Black F. M., Berg J. N., Eickholt B. J., & Leslie N. R . ( 2015). Functionally distinct groups of inherited PTEN mutations in autism and tumour syndromes. Journal of Medical Genetics, 52( 2), 128-134.
pmid: 25527629 url: http://jmg.bmj.com/content/early/2014/12/19/jmedgenet-2014-102803
90 State, M.W., &šestan, N . ( 2012). The emerging biology of autism spectrum disorders. Science, 337( 6100), 1301-1303.
91 Taniai H., Nishiyama T., Miyachi T., Imaeda M., & Sumi S . ( 2008). Genetic influences on the broad spectrum of autism: Study of proband-ascertained twins. American Journal of Medical Genetics Part B Neuropsychiatr Genetics, 147b(#6), 844-849.
pmid: 18361421 url: http://www.ncbi.nlm.nih.gov/pubmed/18361421
92 Tischmeyer W., Kaczmarek L., Strauss M., Jork R., & Matthies H . ( 1990). Accumulation of c-fos mRNA in rat hippocampus during acquisition of a brightness discrimination. Behavioral and Neural Biology, 54( 2), 165-171.
pmid: 2122879 url: http://www.sciencedirect.com/science/article/pii/016310479091366J
93 Tsang S. W., Francis P. T., Esiri M. M., Wong P. T., Chen C. P., & Lai M. K . ( 2008). Loss of [3h]4-damp binding to muscarinic receptors in the orbitofrontal cortex of alzheimer's disease patients with psychosis. Psychopharmacology, 198( 2), 251.
pmid: 18373228 url: http://link.springer.com/article/10.1007/s00213-008-1124-9
94 Vorstman J. A. S., Parr J. R., Moreno-De-Luca D., Anney R. J. L., Nurnberger J. I., Jr., & Hallmayer J. F . ( 2017). Autism genetics: Opportunities and challenges for clinical translation. Nature Reviews. Genetics, 18( 6), 362-376.
pmid: 28260791 url: http://www.ncbi.nlm.nih.gov/pubmed/28260791
95 Wang, J.Q., &McGinty, J.F . ( 1997). Intrastriatal injection of a muscarinic receptor agonist and antagonist regulates striatal neuropeptide mRNA expression in normal and amphetamine-treated rats. Brain Research, 748( 1-2), 62-70.
pmid: 9067445 url: http://www.ncbi.nlm.nih.gov/pubmed/9067445
96 Whitehouse P. J., Price D. L., Struble R. G., Clark A. W., Coyle J. T., & Delon M. R . ( 1982). Alzheimer's disease and senile dementia: Loss of neurons in the basal forebrain. Science, 215( 4537), 1237-1239.
pmid: 7058341 url: http://europepmc.org/abstract/MED/7058341
97 Wing, L. ( 1981). Language, social, and cognitive impairments in autism and severe mental retardation. Journal of Autism and Developmental Disorders, 11( 1), 31-44.
pmid: 6927697 url: http://www.ncbi.nlm.nih.gov/pubmed/6927697
98 Wood C. L., Warnell F., Johnson M., Hames A., Pearce M. S., McConachie H., & Parr J. R . ( 2015). Evidence for ASD recurrence rates and reproductive stoppage from large UK ASD research family databases. Autism Research, 8( 1), 73-81.
pmid: 25273900 url: http://onlinelibrary.wiley.com/doi/10.1002/aur.1414/full
99 Yamada M., Miyakawa T., Duttaroy A., Yamanaka A., Moriguchi T., Makita R., .. Wess J . ( 2001). Mice lacking the M3 muscarinic acetylcholine receptor are hypophagic and lean. Nature, 410( 6825), 207-212.
pmid: 11242080 url: http://europepmc.org/abstract/MED/11242080
100 Yang M., Scattoni M. L., Zhodzishsky V., Chen T., Caldwell H., Young W. S., .. Crawley J. N . ( 2007). Social approach behaviors are similar on conventional versus reverse lighting cycles, and in replications across cohorts, in BTBR T+ tf/J, C57BL/6J, and vasopressin receptor 1B mutant mice. Frontiers in Behavioral Neuroscience, 1( 1).
pmid: 2525856 url: http://pubmedcentralcanada.ca/pmcc/articles/PMC2525856/
101 Yun, S.H., &Trommer, B.L . ( 2011). Fragile X mice: reduced long-term potentiation and N-Methyl-D-Aspartate receptor-mediated neurotransmission in dentate gyrus. Journal of Neuroscience Research, 89( 2), 176-182.
pmid: 21162125 url: http://europepmc.org/abstract/med/21162125
102 Zhang, L., &Alger, B.E . ( 2010). Enhanced endocannabinoid signaling elevates neuronal excitability in fragile X syndrome. Journal of Neuroscience, 30( 16), 5724-5729.
103 Zhang Y., Cao S. X., Sun P., He H. Y., Yang C. H., Chen X. J., .. Li X. M . ( 2016). Loss of MeCP2 in cholinergic neurons causes part of RTT-like phenotypes via alpha7 receptor in hippocampus. Cell Research, 26( 6), 728-742.
pmid: 27103432 url: http://pubmedcentralcanada.ca/pmcc/articles/PMC4897179/
[1] Yunqiang LIN,Huimin ZHU,Fuxin LIAN. Can children with autism spectrum disorder recover? Research evidence based on “optimal outcomes” and residual deficits of individuals in spectrum[J]. Advances in Psychological Science, 2018, 26(8): 1465-1474.
[2] LI Taotao, HU Jinsheng, WANG Qi, LI Chengshi, LI Songze, HE Jianqing, LI Chenyang, LIU Shuqing. Audiovisual temporal integration in autism spectrum disorders[J]. Advances in Psychological Science, 2018, 26(6): 1031-1040.
[3] LIN Yiqi, WANG Xi, PENG Kaiping, NI Shiguang.  Virtual reality technology in the psychological treatment for autism spectrum disorders: An systematic review[J]. Advances in Psychological Science, 2018, 26(3): 518-526.
[4] SU Yi (ESTHER).  Acquisition of core Chinese grammar in preschool children with autism spectrum disorders[J]. Advances in Psychological Science, 2018, 26(3): 391-399.
[5] WANG Fenfen, ZHU Zhuohong.  Relational frame theory: It’s application in children with autism spectrum disorders[J]. Advances in Psychological Science, 2017, 25(8): 1321-1326.
[6] MENG Jing; SHEN Lin. Empathy in individuals with autism spectrum disorder: Symptoms, theories and neural mechanisms[J]. Advances in Psychological Science, 2017, 25(1): 59-66.
[7] WANG Qi; HU Jinsheng; LI Chengshi; LI Songze; . The emotional prosody recognition in autism spectrum disorders[J]. Advances in Psychological Science, 2016, 24(9): 1377-1390.
[8] LI Songze; HU Jinsheng; LI Chengshi; WANG Qi; LIU Shuqing; KANG Xiaodong; CUI Li . Visual-spatial working memory deficits and neural mechanism in autism spectrum disorder[J]. Advances in Psychological Science, 2016, 24(7): 1050-1064.
[9] WU Wen-Jiao; ZHANG Peng. Biological basis of autism spectrum disorders[J]. Advances in Psychological Science, 2016, 24(5): 739-752.
[10] FU Juan; ZHENG Xi-Geng; LIU Zheng-Kui. Animal models and related neurobiological mechanisms of conditioned fear relapse[J]. Advances in Psychological Science, 2016, 24(10): 1592-1599.
[11] ZHANG Fen; WANG Suiping; YANG Juanhua; FENG Gangyi. Atypical Brain Functional Connectivity in Autism Spectrum Disorders[J]. Advances in Psychological Science, 2015, 23(7): 1196-1204.
[12] CHEN Shun-Sen;BAI Xue-Jun;ZHANG Ri-Sheng. The Symptom, Diagnosis and Treatment for Autism Spectrum Disorder[J]. , 2011, 19(1): 60-72.
[13] WANG Li-Juan;LUO Hong-Ge;YAO Xue. The Neural Mechanisms of Face Recognition in Autism Spectrum Disorders[J]. , 2009, 17(06): 1177-1184.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
Copyright © Advances in Psychological Science
Support by Beijing Magtech