Please wait a minute...
Advances in Psychological Science    2018, Vol. 26 Issue (11) : 1969-1975     DOI: 10.3724/SP.J.1042.2018.01969
Regular Articles |
Bivalency effect and its cognitive mechanism
Weiwei DU1,Ting SONG1,Fuhong LI2()
1 Research Center of Brain and Cognitive Science, Liaoning Normal University, Dalian 116029, China
2 School of Psychology, Jiangxi Normal University, Nanchang 330022, China
Download: PDF(472 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks     Supporting Info
Guide   
Abstract  

In task switching, a stimulus containing the features of the current task and the associated features of another task is defined as a bivalent stimulus. Exposure to bivalent stimuli affects the processing of univalent stimuli, slowing the response to all subsequent univalent stimuli. This phenomenon is called the bivalency effect. Researchers have found that the bivalency effect is generally and stably observed among various tasks. The theoretical explanation of the bivalency effect mainly comprises episodic context binding and the history-dependent predictive model. The generation of the bivalency effect is related to the extraction of additional visual features and top-down adjustment of cognitive control. The former is mainly related to activation of the temporal-parietal junction, while the latter is mainly related to activation of the dorsal anterior cingulate cortex and the pre-supplementary motor regions.

Keywords bivalency effect      conflict      cognitive control      dorsal anterior cingulate cortex      cognitive mechanism     
ZTFLH:  B842  
Corresponding Authors: Fuhong LI     E-mail: lifuhong@jxnu.edu.cn
Issue Date: 26 September 2018
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Weiwei DU
Ting SONG
Fuhong LI
Cite this article:   
Weiwei DU,Ting SONG,Fuhong LI. Bivalency effect and its cognitive mechanism[J]. Advances in Psychological Science, 2018, 26(11): 1969-1975.
URL:  
http://journal.psych.ac.cn/xlkxjz/EN/10.3724/SP.J.1042.2018.01969     OR     http://journal.psych.ac.cn/xlkxjz/EN/Y2018/V26/I11/1969
  
[1] Allport, A. , & Wylie, G.( 2000) . Task switching, stimulus-response bindings, and negative priming. In S. Monsell & J. Driver (Eds.), Control of cognitive processes: Attention and performance XVIII (pp. 35-70). Cambridge: MIT Press.
[2] Allport, D. A., Styles, E. A., & Hsieh, S. ( 1994). Shifting intentional set: exploring the dynamic control of tasks. Attention & Performance, Vol. XV(#5), 421-452.
[3] Botvinick, M. M., Braver, T. S., Barch, D. M., Carter, C. S., & Cohen, J. D. ( 2001). Conflict monitoring and cognitive control. Psychological Review, 108( 3), 624-652.
pmid: 11488380 url: http://doi.apa.org/getdoi.cfm?doi=10.1037/0033-295X.108.3.624
[4] Clayson, P.E., & Larson, M.J . ( 2012). Cognitive performance and electrophysiological indices of cognitive control: A validation study of conflict adaptation. Psychophysiology, 49( 5), 627-637.
[5] Egner, T.( 2008). Multiple conflict-driven control mechanisms in the human brain. Trends in Cognitive Sciences, 12( 10), 374-380.
url: http://linkinghub.elsevier.com/retrieve/pii/S1364661308001952
[6] Egner, T., & Hirsch, J.( 2005). The neural correlates and functional integration of cognitive control in a stroop task. Neuroimage, 24( 2), 539-547.
pmid: 15627596 url: http://linkinghub.elsevier.com/retrieve/pii/S105381190400521X
[7] Evans, M. A., Shedden, J. M., Hevenor, S. J., & Hahn, M. C. ( 2000). The effect of variability of unattended information on global and local processing: evidence for lateralization at early stages of processing. Neuropsychologia, 38( 3), 225-239.
[8] Grundy, J.G., & Shedden, J.M . ( 2014a). A role for recency of response conflict in producing the bivalency effect. Psychological Research, 78( 5), 679-691.
[9] Grundy, J.G., & Shedden, J.M . ( 2014b). Support for a history-dependent predictive model of dACC activity in producing the bivalency effect: An event-related potential study. Neuropsychologia, 57, 166-178.
[10] Grundy, J. G., Benarroch, M. F. F., Woodward, T. S., Metzak, P. D., Whitman, J. C., & Shedden, J. M. ( 2013). The Bivalency effect in task switching: Event-related potentials. Human Brain Mapping, 34( 5), 999-1012.
pmid: 22162123 url: http://onlinelibrary.wiley.com/doi/10.1002/hbm.21488/full
[11] Kerns, J. G., Cohen, J. D., MacDonald III, A. W., Cho, R. Y., Stenger, V. A., & Carter, C. S. ( 2004). Anterior cingulate conflict monitoring and adjustments in control. Science, 303( 5560), 1023-1026.
url: http://www.sciencemag.org/cgi/doi/10.1126/science.1089910
[12] Larson, M. J., Kaufman, D. A., & Perlstein, W. M. ( 2009). Neural time course of conflict adaptation effects on the Stroop task. Neuropsychologia, 47( 3), 663-670.
pmid: 19071142 url: http://www.ncbi.nlm.nih.gov/pubmed/19071142/
[13] Meier, B., Rey-Mermet, A., Woodward, T. S., Müri, R., & Gutbrod, K. ( 2013). Episodic context binding in task switching: Evidence from amnesia. Neuropsychologia, 51( 5), 886-892.
pmid: 23395937 url: http://www.ncbi.nlm.nih.gov/pubmed/23395937
[14] Meier, B., Woodward, T. S., Rey-Mermet, A., & Graf, P. ( 2009). The bivalency effect in task switching: general and enduring. Canadian Journal of Experimental Psychology, 63( 3), 201-210.
pmid: 19739903 url: http://doi.apa.org/getdoi.cfm?doi=10.1037/a0014311
[15] Metzak, P. D., Meier, B., Graf, P., & Woodward, T. S. ( 2013). More than a surprise: The bivalency effect in task switching. Journal of Cognitive Psychology, 25( 7), 833-842.
url: http://www.tandfonline.com/doi/full/10.1080/20445911.2013.832196
[16] Poulsen, C., Luu, P., Davey, C., & Tucker, D. M. ( 2005). Dynamics of task sets: evidence from dense-array event- related potentials. Cognitive Brain Research, 24( 1), 133-154.
pmid: 15922166 url: http://www.sciencedirect.com/science/article/pii/S0926641005000169
[17] Rey-Mermet, A., & Meier, B.( 2012a). The bivalency effect: Evidence for flexible adjustment of cognitive control. Journal of Experimental Psychology: Human Perception and Performance, 38( 1), 213-221.
url: http://doi.apa.org/getdoi.cfm?doi=10.1037/a0026024
[18] Rey-Mermet, A., & Meier, B.( 2012b). The bivalency effect: adjustment if cognitive control without response set priming. Psychological Research, 76( 1), 50-59.
[19] Rey-Mermet, A., & Meier, B.( 2013). An orienting response is not enough: Bivalency not infrequency causes the bivalency effect. Advances in Cognitive Psychology, 9( 3), 146-155.
[20] Rey-Mermet, A., & Meier, B.( 2014). More conflict does not trigger more adjustment of cognitive control for subsequent events: A study of the bivalency effect. Actapsychologica, 145, 111-117.
[21] Rey-Mermet, A., & Meier, B.( 2016). Post-conflict slowing after incongruent stimuli: from general to conflict-specific. Psychological Research, 81( 3), 611-628.
[22] Rey-Mermet, A., Koenig, T., & Meier, B. ( 2013). The bivalency effect represents an interference-triggered adjustment of cognitive control: An ERP study. Cognitive, Affective, & Behavioral Neuroscience, 13( 3), 575-583.
[23] Sheth, S. A., Mian, M. K., Patel, S. R., Asaad, W. F., Williams, Z. M., Dougherty, D. D., … Eskandar, E. N. ( 2012). Human dorsal anterior cingulate cortex neurons mediate ongoing behavioral adaptation. Nature, 488( 7410), 218-221.
url: http://www.nature.com/articles/nature11239
[24] Spapé, M. M., Band, G. P. H., & Hommel, B. ( 2011). Compatibility-sequence effects in the Simon task reflect episodic retrieval but not conflict adaptation: Evidence from LRP and N2. Biological Psychology, 88( 1), 116-123.
[25] Woodward, T. S., Meier, B., Tipper, C., & Graf, P. ( 2003). Bivalency is costly: Bivalent stimuli elicit cautious responding. Experimental Psychology, 50( 4), 233-238.
[26] Woodward, T. S., Metzak, P. D., Meier, B., & Holroyd, C. B. ( 2008). Anterior cingulate cortex signals the requirement to break inertia when switching tasks: A study of the bivalency effect. NeuroImage, 40( 3), 1311-1318.
[27] Woodward, T. S., Ruff, C. C., & Ngan, E. T. C.( 2006b). Short- and long-term changes in anterior cingulate activation during resolution of task-set competition. Brain Research, 1068( 1), 161-169.
[28] Wylie, G. R., Javitt, D. C., & Foxe, J. J. ( 2003). Task switching: a high-density electrical mapping study. Neuroimage, 20( 4), 2322-2342.
pmid: 14683733 url: http://europepmc.org/abstract/MED/14683733
[1] Huan HUANG,Bo LIU,Chenchen ZHOU,Ming JI. Mechanisms of commission errors in aftereffects of completed intentions[J]. Advances in Psychological Science, 2018, 26(9): 1600-1607.
[2] LI Zhenghan, YANG Guochun, NAN Weizhi, LI Qi, LIU Xun. Attentional regulation mechanisms of cognitive control in conflict resolution[J]. Advances in Psychological Science, 2018, 26(6): 966-974.
[3] TENG Jing, SHEN Wangbing, HAO Ning.  The role of cognitive control in divergent thinking[J]. Advances in Psychological Science, 2018, 26(3): 411-422.
[4] FAN Wei, YANG Bo, LIU Juan, FU Xiaolan.  Self-deception: For adjusting individual psychological states[J]. Advances in Psychological Science, 2017, 25(8): 1349-1359.
[5] GUO Xucheng, MA Hongyu, JIANG Hai, YUAN Ming.  Work-family interaction in the context of individualism-collectivism culture[J]. Advances in Psychological Science, 2017, 25(6): 1036-1044.
[6] ZHAO Fengqing; YU Guoliang. Sibling relationship and its relation with children and adolescents’ social development[J]. Advances in Psychological Science, 2017, 25(5): 825-836.
[7] WANG Pei; LIU Yonghe; TAN Chenhao; LI Yu; WANG Zixin; BAI Yonghai. Conflict schemas moderate the effects of emotions on interpersonal relations[J]. Advances in Psychological Science, 2017, 25(2): 331-341.
[8] ZHAI Xianliang; GE Lujia. Constructive conflict and translation of perspective in the positive psychology research[J]. Advances in Psychological Science, 2017, 25(2): 290-297.
[9] CHEN Bin-Bin, ZHAO Yu, HAN Wen, WANG Yichen, WU Jiawen, YUE Xinyu, WU Yingting.  Sibling relationships: Forms, causes and consequences[J]. Advances in Psychological Science, 2017, 25(12): 2168-2178.
[10] AI Juan.  Every injustice has its perpetrator? Inter-group vicarious retribution[J]. Advances in Psychological Science, 2017, 25(11): 1964-1971.
[11] MA Jianling; LIU Chang; FU Mingqiu. Neural mechanism of how emotion affects conflict processing[J]. Advances in Psychological Science, 2017, 25(1): 49-58.
[12] YANG Yingkai; LIU Yanling. The cognitive neural mechanism of depressive rumination[J]. Advances in Psychological Science, 2016, 24(7): 1042-1049.
[13] LI Aimei; SUN Hailong; Xiong Guanxing; WANG Xiaotian; LI Bin. The effect and cognitive mechanism of “time poverty” on intertemporal choice and proactive behavior[J]. Advances in Psychological Science, 2016, 24(6): 874-884.
[14] ZHU Yanhan; ZHOU Yiyong; LIU Liying; LI Bosi. Interpersonal conflict in organization: Types, models and expression[J]. Advances in Psychological Science, 2016, 24(5): 824-835.
[15] LIU Changjiang; ZHANG Yue; HAO Fang; LIU Caimeng; DING Xu; SHI Yu. The automaticity of social behavior in situations of conflicting interests: Cooperation or self-interest?[J]. Advances in Psychological Science, 2016, 24(12): 1897-1906.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
Copyright © Advances in Psychological Science
Support by Beijing Magtech