Please wait a minute...
Advances in Psychological Science    2018, Vol. 26 Issue (11) : 1969-1975     DOI: 10.3724/SP.J.1042.2018.01969
Regular Articles |
Bivalency effect and its cognitive mechanism
Weiwei DU1, Ting SONG1, Fuhong LI2()
1 Research Center of Brain and Cognitive Science, Liaoning Normal University, Dalian 116029, China
2 School of Psychology, Jiangxi Normal University, Nanchang 330022, China
Download: PDF(472 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks     Supporting Info
Guide   
Abstract  

In task switching, a stimulus containing the features of the current task and the associated features of another task is defined as a bivalent stimulus. Exposure to bivalent stimuli affects the processing of univalent stimuli, slowing the response to all subsequent univalent stimuli. This phenomenon is called the bivalency effect. Researchers have found that the bivalency effect is generally and stably observed among various tasks. The theoretical explanation of the bivalency effect mainly comprises episodic context binding and the history-dependent predictive model. The generation of the bivalency effect is related to the extraction of additional visual features and top-down adjustment of cognitive control. The former is mainly related to activation of the temporal-parietal junction, while the latter is mainly related to activation of the dorsal anterior cingulate cortex and the pre-supplementary motor regions.

Keywords bivalency effect      conflict      cognitive control      dorsal anterior cingulate cortex      cognitive mechanism     
PACS:  B842  
Corresponding Authors: Fuhong LI     E-mail: lifuhong@jxnu.edu.cn
Issue Date: 26 September 2018
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Weiwei DU
Ting SONG
Fuhong LI
Cite this article:   
Weiwei DU,Ting SONG,Fuhong LI. Bivalency effect and its cognitive mechanism[J]. Advances in Psychological Science, 2018, 26(11): 1969-1975.
URL:  
http://journal.psych.ac.cn/xlkxjz/EN/10.3724/SP.J.1042.2018.01969     OR     http://journal.psych.ac.cn/xlkxjz/EN/Y2018/V26/I11/1969
  
[1] Allport, A. , & Wylie, G.( 2000) . Task switching, stimulus-response bindings, and negative priming. In S. Monsell & J. Driver (Eds.), Control of cognitive processes: Attention and performance XVIII (pp. 35-70). Cambridge: MIT Press.
[2] Allport, D. A., Styles, E. A., & Hsieh, S. ( 1994). Shifting intentional set: exploring the dynamic control of tasks. Attention & Performance, Vol. XV(#5), 421-452.
[3] Botvinick, M. M., Braver, T. S., Barch, D. M., Carter, C. S., & Cohen, J. D. ( 2001). Conflict monitoring and cognitive control. Psychological Review, 108( 3), 624-652.
doi: 10.1037//0033-295X.108.3.624 pmid: 11488380 url: http://doi.apa.org/getdoi.cfm?doi=10.1037/0033-295X.108.3.624
[4] Clayson, P.E., & Larson, M.J . ( 2012). Cognitive performance and electrophysiological indices of cognitive control: A validation study of conflict adaptation. Psychophysiology, 49( 5), 627-637.
[5] Egner, T.( 2008). Multiple conflict-driven control mechanisms in the human brain. Trends in Cognitive Sciences, 12( 10), 374-380.
doi: 10.1016/j.tics.2008.07.001 url: http://linkinghub.elsevier.com/retrieve/pii/S1364661308001952
[6] Egner, T., & Hirsch, J.( 2005). The neural correlates and functional integration of cognitive control in a stroop task. Neuroimage, 24( 2), 539-547.
doi: 10.1016/j.neuroimage.2004.09.007 pmid: 15627596 url: http://linkinghub.elsevier.com/retrieve/pii/S105381190400521X
[7] Evans, M. A., Shedden, J. M., Hevenor, S. J., & Hahn, M. C. ( 2000). The effect of variability of unattended information on global and local processing: evidence for lateralization at early stages of processing. Neuropsychologia, 38( 3), 225-239.
[8] Grundy, J.G., & Shedden, J.M . ( 2014a). A role for recency of response conflict in producing the bivalency effect. Psychological Research, 78( 5), 679-691.
[9] Grundy, J.G., & Shedden, J.M . ( 2014b). Support for a history-dependent predictive model of dACC activity in producing the bivalency effect: An event-related potential study. Neuropsychologia, 57, 166-178.
[10] Grundy, J. G., Benarroch, M. F. F., Woodward, T. S., Metzak, P. D., Whitman, J. C., & Shedden, J. M. ( 2013). The Bivalency effect in task switching: Event-related potentials. Human Brain Mapping, 34( 5), 999-1012.
doi: 10.1002/hbm.21488 pmid: 22162123 url: http://onlinelibrary.wiley.com/doi/10.1002/hbm.21488/full
[11] Kerns, J. G., Cohen, J. D., MacDonald III, A. W., Cho, R. Y., Stenger, V. A., & Carter, C. S. ( 2004). Anterior cingulate conflict monitoring and adjustments in control. Science, 303( 5560), 1023-1026.
doi: 10.1126/science.1089910 url: http://www.sciencemag.org/cgi/doi/10.1126/science.1089910
[12] Larson, M. J., Kaufman, D. A., & Perlstein, W. M. ( 2009). Neural time course of conflict adaptation effects on the Stroop task. Neuropsychologia, 47( 3), 663-670.
doi: 10.1016/j.neuropsychologia.2008.11.013 pmid: 19071142 url: http://www.ncbi.nlm.nih.gov/pubmed/19071142/
[13] Meier, B., Rey-Mermet, A., Woodward, T. S., Müri, R., & Gutbrod, K. ( 2013). Episodic context binding in task switching: Evidence from amnesia. Neuropsychologia, 51( 5), 886-892.
doi: 10.1016/j.neuropsychologia.2013.01.025 pmid: 23395937 url: http://www.ncbi.nlm.nih.gov/pubmed/23395937
[14] Meier, B., Woodward, T. S., Rey-Mermet, A., & Graf, P. ( 2009). The bivalency effect in task switching: general and enduring. Canadian Journal of Experimental Psychology, 63( 3), 201-210.
doi: 10.1002/hbm.21488 pmid: 19739903 url: http://doi.apa.org/getdoi.cfm?doi=10.1037/a0014311
[15] Metzak, P. D., Meier, B., Graf, P., & Woodward, T. S. ( 2013). More than a surprise: The bivalency effect in task switching. Journal of Cognitive Psychology, 25( 7), 833-842.
doi: 10.1080/20445911.2013.832196 url: http://www.tandfonline.com/doi/full/10.1080/20445911.2013.832196
[16] Poulsen, C., Luu, P., Davey, C., & Tucker, D. M. ( 2005). Dynamics of task sets: evidence from dense-array event- related potentials. Cognitive Brain Research, 24( 1), 133-154.
doi: 10.1016/j.cogbrainres.2005.01.008 pmid: 15922166 url: http://www.sciencedirect.com/science/article/pii/S0926641005000169
[17] Rey-Mermet, A., & Meier, B.( 2012a). The bivalency effect: Evidence for flexible adjustment of cognitive control. Journal of Experimental Psychology: Human Perception and Performance, 38( 1), 213-221.
doi: 10.1037/a0026024 url: http://doi.apa.org/getdoi.cfm?doi=10.1037/a0026024
[18] Rey-Mermet, A., & Meier, B.( 2012b). The bivalency effect: adjustment if cognitive control without response set priming. Psychological Research, 76( 1), 50-59.
[19] Rey-Mermet, A., & Meier, B.( 2013). An orienting response is not enough: Bivalency not infrequency causes the bivalency effect. Advances in Cognitive Psychology, 9( 3), 146-155.
[20] Rey-Mermet, A., & Meier, B.( 2014). More conflict does not trigger more adjustment of cognitive control for subsequent events: A study of the bivalency effect. Actapsychologica, 145, 111-117.
[21] Rey-Mermet, A., & Meier, B.( 2016). Post-conflict slowing after incongruent stimuli: from general to conflict-specific. Psychological Research, 81( 3), 611-628.
[22] Rey-Mermet, A., Koenig, T., & Meier, B. ( 2013). The bivalency effect represents an interference-triggered adjustment of cognitive control: An ERP study. Cognitive, Affective, & Behavioral Neuroscience, 13( 3), 575-583.
[23] Sheth, S. A., Mian, M. K., Patel, S. R., Asaad, W. F., Williams, Z. M., Dougherty, D. D., … Eskandar, E. N. ( 2012). Human dorsal anterior cingulate cortex neurons mediate ongoing behavioral adaptation. Nature, 488( 7410), 218-221.
doi: 10.1038/nature11239 url: http://www.nature.com/articles/nature11239
[24] Spapé, M. M., Band, G. P. H., & Hommel, B. ( 2011). Compatibility-sequence effects in the Simon task reflect episodic retrieval but not conflict adaptation: Evidence from LRP and N2. Biological Psychology, 88( 1), 116-123.
[25] Woodward, T. S., Meier, B., Tipper, C., & Graf, P. ( 2003). Bivalency is costly: Bivalent stimuli elicit cautious responding. Experimental Psychology, 50( 4), 233-238.
[26] Woodward, T. S., Metzak, P. D., Meier, B., & Holroyd, C. B. ( 2008). Anterior cingulate cortex signals the requirement to break inertia when switching tasks: A study of the bivalency effect. NeuroImage, 40( 3), 1311-1318.
[27] Woodward, T. S., Ruff, C. C., & Ngan, E. T. C.( 2006b). Short- and long-term changes in anterior cingulate activation during resolution of task-set competition. Brain Research, 1068( 1), 161-169.
[28] Wylie, G. R., Javitt, D. C., & Foxe, J. J. ( 2003). Task switching: a high-density electrical mapping study. Neuroimage, 20( 4), 2322-2342.
doi: 10.1016/j.neuroimage.2003.08.010 pmid: 14683733 url: http://europepmc.org/abstract/MED/14683733
[1] Jingjing ZHANG, Xiaoyue LIANG, Yidi CHEN, Qingrong CHEN. The cognitive mechanism of music syntactic processing and the influence of music structure on its processing[J]. Advances in Psychological Science, 2020, 28(6): 883-892.
[2] Lihui WU. The influence and mechanism of self-construal on consumers’ preference for polarizing products[J]. Advances in Psychological Science, 2020, 28(4): 535-548.
[3] Yanjie SU, Dongjie XIE, Xiaonan WANG. The role of cognitive control in third-party punishment[J]. Advances in Psychological Science, 2019, 27(8): 1331-1343.
[4] Xufan ZHANG, Meng XI. The double-paths effects of union practices on employee well-being: Based instrumental-emotional perspective[J]. Advances in Psychological Science, 2019, 27(8): 1354-1362.
[5] Yan LIU, Xi ZOU, Xin SHU. The process whereby organizational identification promotes and prohibits employees’ innovative behavior[J]. Advances in Psychological Science, 2019, 27(7): 1153-1166.
[6] Haining LIU, Xiaoqian LIU, Haihong LIU, Feng LI, Buxin HAN. The mechanism of positivity effect in elderly’s emotional attention[J]. Advances in Psychological Science, 2019, 27(12): 2064-2076.
[7] Xiaoting LIU, Lijin ZHANG, Ning ZHANG. The effects of sleep quality on risk-taking behavior: Evidence and explanation[J]. Advances in Psychological Science, 2019, 27(11): 1875-1886.
[8] Hao WANG, Guoliang YU. Relational aggression in romantic relationship[J]. Advances in Psychological Science, 2019, 27(1): 106-116.
[9] Lin CHEN, Xiaoming TIAN, Jinyun DUAN. The cognitive mechanism of advice taking[J]. Advances in Psychological Science, 2019, 27(1): 149-159.
[10] Huan HUANG,Bo LIU,Chenchen ZHOU,Ming JI. Mechanisms of commission errors in aftereffects of completed intentions[J]. Advances in Psychological Science, 2018, 26(9): 1600-1607.
[11] LI Zhenghan, YANG Guochun, NAN Weizhi, LI Qi, LIU Xun. Attentional regulation mechanisms of cognitive control in conflict resolution[J]. Advances in Psychological Science, 2018, 26(6): 966-974.
[12] TENG Jing, SHEN Wangbing, HAO Ning.  The role of cognitive control in divergent thinking[J]. Advances in Psychological Science, 2018, 26(3): 411-422.
[13] FAN Wei, YANG Bo, LIU Juan, FU Xiaolan.  Self-deception: For adjusting individual psychological states[J]. Advances in Psychological Science, 2017, 25(8): 1349-1359.
[14] GUO Xucheng, MA Hongyu, JIANG Hai, YUAN Ming.  Work-family interaction in the context of individualism-collectivism culture[J]. Advances in Psychological Science, 2017, 25(6): 1036-1044.
[15] ZHAO Fengqing; YU Guoliang. Sibling relationship and its relation with children and adolescents’ social development[J]. Advances in Psychological Science, 2017, 25(5): 825-836.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
Copyright © Advances in Psychological Science
Support by Beijing Magtech