Please wait a minute...
Advances in Psychological Science    2018, Vol. 26 Issue (10) : 1857-1868     DOI: 10.3724/SP.J.1042.2018.01857
|
The brain mechanisms of the physical exercise enhancing cognitive function
XIA Haishuo1,DING Qingwen2,ZHUANG Ya3,CHEN Antao1()
1 School of Psychology, Southwest University, Chongqing 400715, China
2 Department of Psychology, Central China Normal University, Wuhan 430079, China
3 Department of Physical Education, Southwest University, Chongqing 400715, China
Download: PDF(433 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks     Supporting Info
Guide   
Abstract  

It has been identified that physical exercise is able to enhance cognitive functions, attracting attention to the underlying brain mechanisms. The literature shows that the enhancing effects rely basically on two distinct mechanisms, on the microscale and macroscale levels, respectively. At the microscale level, physical exercise favored synaptogenesis and the survival of neurons through better nutrient supply and metabolism. At the macroscale level, physical exercise could enhance cognition through enlarging the volume of white and grey matter, and changing the brain activity and functional connectivity. Notably, multiple factors could influence the enhancing effects of physical exercise on cognition, such as individual differences, time, and the interaction between physical exercise and cognitive stimulations. These factors provide new directions to conduct deep and systematic investigations on the brain mechanisms of enhancing effects on the two levels.

Keywords physical exercise      cognitive enhancement      brain imaging      brain derived neurotrophic factor      synaptogenesis     
Corresponding Authors: Antao CHEN     E-mail: xscat@swu.edu.cn
Issue Date: 27 August 2018
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
XIA Haishuo
DING Qingwen
ZHUANG Yan
CHEN Antao
Cite this article:   
XIA Haishuo,DING Qingwen,ZHUANG Yan, et al. The brain mechanisms of the physical exercise enhancing cognitive function[J]. Advances in Psychological Science, 2018, 26(10): 1857-1868.
URL:  
http://journal.psych.ac.cn/xlkxjz/EN/10.3724/SP.J.1042.2018.01857     OR     http://journal.psych.ac.cn/xlkxjz/EN/Y2018/V26/I10/1857
  
1 Alosco M. L., Spitznagel M. B., Cohen R., Raz N., Sweet L. H., Josephson R., .. Gunstad J . ( 2014). Decreased physical activity predicts cognitive dysfunction and reduced cerebral blood flow in heart failure. Journal of the Neurological Sciences, 339( 1-2), 169-175.
url: http://linkinghub.elsevier.com/retrieve/pii/S0022510X1400094X
2 An T. D., Zagaar M. A., & Alkadhi K. A . ( 2015). Moderate treadmill exercise protects synaptic plasticity of the dentate gyrus and related signaling cascade in a rat model of Alzheimer’s disease. Molecular Neurobiology, 52( 3), 1067-1067.
url: http://link.springer.com/10.1007/s12035-014-8916-1
3 Anazodo U. C., Shoemaker J. K., Suskin N ., & Lawrence, K. S. S. ( 2013). An investigation of changes in regional gray matter volume in cardiovascular disease patients, pre and post cardiovascular rehabilitation. NeuroImage: Clinical, 3, 388-395.
url: http://linkinghub.elsevier.com/retrieve/pii/S2213158213001289
4 Anderson B. J., Eckburg P. B., & Relucio K. I . ( 2002). Alterations in the thickness of motor cortical subregions after motor-skill learning and exercise. Learning & Memory, 9( 1), 1-9.
5 Ashburner J., & Friston, K. J . ( 2000). Voxel-based morphometry-the methods. NeuroImage, 11( 6), 805-821.
url: http://linkinghub.elsevier.com/retrieve/pii/S1053811900905822
6 Bedi, K. S . ( 2003). Review. Nutritional Neuroscience, 6( 3), 141-152.
url: http://www.tandfonline.com/doi/full/10.1080/1028415031000098549
7 Bélanger M., Allaman I., & Magistretti P. J . ( 2011). Brain energy metabolism: Focus on astrocyte-neuron metabolic cooperation. Cell Metabolism, 14( 6), 724-738.
pmid: 22152301 url: http://linkinghub.elsevier.com/retrieve/pii/S1550413111004207
8 Bherer L., Lussier M., Desjardins L., Fraser S., Li K. Z., Berryman N., .. Vu T . ( 2017). Effects of physical exercise, cognitive training, and combined intervention on executive functions. Innovation in Aging, 1( 1), 1365.
9 Blumen H. M., Gopher D., Steinerman J. R., & Stern Y . ( 2010). Training cognitive control in older adults with the space fortress game: The role of training instructions and basic motor ability. Frontiers in Aging Neuroscience, 2, 145.
10 Brown J., Cooper-Kuhn C. M., Kempermann G., van Praag H., Winkler J., & Gage F. H . ( 2003). Enriched environment and physical activity stimulate hippocampal but not olfactory bulb neurogenesis. European Journal of Neuroscience, 17( 10), 2042-2046.
url: http://doi.wiley.com/10.1046/j.1460-9568.2003.02647.x
11 Brudzynski S. M., & Gibson, C. J . ( 1997). Release of dopamine in the nucleus accumbens caused by stimulation of the subiculum in freely moving rats. Brain Research Bulletin, 42( 4), 303-308.
url: http://linkinghub.elsevier.com/retrieve/pii/S0361923096002900
12 Burdette J. H., Laurienti P. J., Espeland M. A., Morgan A., Telesford Q., Vechlekar C. D., .. Rejeski W. J . ( 2010). Using network science to evaluate exercise-associated brain changes in older adults. Frontiers in Aging Neuroscience, 2, 2.
pmid: 2893375 url: http://europepmc.org/abstract/med/20589103
13 Caruso R., Santucci A., Caruso M. P., Pittella F., Dellafiore F., Corbetta S., & Mosconi E . ( 2015). Physical activity, dietary habits and cognitive decline in over 65 years Italian outpatients with type 2 diabetes: a cross-sectional pilot study. International Diabetes Nursing, 12( 2), 69-73.
url: http://www.tandfonline.com/doi/full/10.1179/2057332415Y.0000000005
14 Chaddock-Heyman L., Erickson K. I., Voss M. W., Knecht A. M., Pontifex M. B., Castelli D. M., .. Kramer A. F . ( 2013). The effects of physical activity on functional MRI activation associated with cognitive control in children: A randomized controlled intervention. Frontiers in Human Neuroscience, 7, 72.
15 Chang Y. K., Labban J. D., Gapin J. I., & Etnier J. L . ( 2012). The effects of acute exercise on cognitive performance: A meta-analysis. Brain Research, 1453, 87-101.
16 Chen A. G., Zhu L. N., Yan J., & Yin H. C . ( 2016). Neural basis of working memory enhancement after acute aerobic exercise: fMRI study of preadolescent children. Frontiers in Psychology, 7, 1804.
17 Chirles T. J., Reiter K., Weiss L. R., Alfini A. J., Nielson K. A., & Smith J. C . ( 2017). Exercise training and functional connectivity changes in mild cognitive impairment and healthy elders. Journal of Alzheimer’s Disease, 57( 3), 845-856.
url: http://www.medra.org/servlet/aliasResolver?alias=iospress&doi=10.3233/JAD-161151
18 Choo M., Miyazaki T., Yamazaki M., Kawamura M., Nakazawa T., Zhang J. L., .. Kano M . ( 2017). Retrograde BDNF to TrkB signaling promotes synapse elimination in the developing cerebellum. Nature Communications, 8, 195.
pmid: 5543168 url: http://www.nature.com/articles/s41467-017-00260-w
19 Christie B. R., Eadie B. D., Kannangara T. S., Robillard J. M., Shin J., & Titterness A. K . ( 2008). Exercising our brains: How physical activity impacts synaptic plasticity in the dentate gyrus. Neuromolecular Medicine, 10( 2), 47-58.
pmid: 18535925 url: http://link.springer.com/10.1007/s12017-008-8033-2
20 Colberg S. R., Somma C. T., & Sechrist S. R . ( 2008). Physical activity participation may offset some of the negative impact of diabetes on cognitive function. Journal of the American Medical Directors Association, 9( 6), 434-438.
url: http://linkinghub.elsevier.com/retrieve/pii/S1525861008001217
21 Colcombe S. J., Erickson K. I., Scalf P. E., Kim J. S., Prakash R., Mcauley E., .. Kramer A. F . ( 2006). Aerobic exercise training increases brain volume in aging humans. The Journals of Gerontology: Series A, 61( 11), 1166-1170.
pmid: 17167157 url: https://academic.oup.com/biomedgerontology/article-lookup/doi/10.1093/gerona/61.11.1166
22 Colcombe S. J., Kramer A. F., Erickson K. I., Scalf P., McAuley E., Cohen N. J., .. Elavsky S . ( 2004). Cardiovascular fitness, cortical plasticity, and aging. Proceedings of the National Academy of Sciences of the United States of America, 101( 9), 3316-3321.
pmid: 14978288 url: http://www.pnas.org/cgi/doi/10.1073/pnas.0400266101
23 Cotman C. W., Berchtold N. C., & Christie L. A . ( 2007). Exercise builds brain health: Key roles of growth factor cascades and inflammation. Trends in Neurosciences, 30( 9), 464-472.
url: http://linkinghub.elsevier.com/retrieve/pii/S0166223607001786
24 Cox E. P., O'Dwyer N., Cook R., Vetter M., Cheng H. L., Rooney K., & O'Connor H . ( 2016). Relationship between physical activity and cognitive function in apparently healthy young to middle-aged adults: A systematic review. Journal of Science and Medicine in Sport, 19( 8), 616-628.
url: https://linkinghub.elsevier.com/retrieve/pii/S1440244015001802
25 Davis C. L., Tomporowski P. D., McDowell J. E., Austin B. P., Miller P. H., Yanasak N. E., .. Naglieri J. A . ( 2011). Exercise improves executive function and achievement and alters brain activation in overweight children: A randomized, controlled trial. Health Psychology, 30( 1), 91-98.
url: http://doi.apa.org/getdoi.cfm?doi=10.1037/a0021766
26 De Luca, C. R., & Leventer, R. J . ( 2008). Developmental trajectories of executive functions across the lifespan. In V. Anderson, R. Jacobs, P. J. Anderson,( Eds.), Executive functions and the frontal lobes: A lifespan perspective
url: http://www.researchgate.net/publication/281709579_Developmental_trajectories_of_executive_functions_across_the_lifespan
27 Dhar M., Zhu M., Impey S., Lambert T. J., Bland T., Karatsoreos I. N., .. Wayman G. A . ( 2014). Leptin induces hippocampal synaptogenesis via CREB-regulated microRNA-132 suppression of p250GAP. Molecular Endocrinology, 28( 7), 1073-1082.
url: https://academic.oup.com/mend/article-lookup/doi/10.1210/me.2013-1332
28 Erickson K. I., Hillman C. H., & Kramer A. F . ( 2015). Physical activity, brain, and cognition. Current Opinion in Behavioral Sciences, 4, 27-32.
url: https://linkinghub.elsevier.com/retrieve/pii/S2352154615000157
29 Erickson K. I., Voss M. W., Prakash R. S., Basak C., Szabo A., Chaddock L., .. Kramer A. F . ( 2011). Exercise training increases size of hippocampus and improves memory. Proceedings of the National Academy of Sciences of the United States of America, 108( 7), 3017-3022.
pmid: 21282661 url: http://www.pnas.org/cgi/doi/10.1073/pnas.1015950108
30 Espeland M. A., Lipska K., Miller M. E., Rushing J., Cohen R. A., Verghese J ., .. for the LIFE Study Investigators.( 2017). Effects of physical activity intervention on physical and cognitive function in sedentary adults with and without diabetes. The Journals of Gerontology: Series A, 72( 6), 861-866.
31 Etnier J.L., Labban J. D., Piepmeier A., Davis M. E., & Henning D. A . ( 2014). Effects of an acute bout of exercise on memory in 6 th grade children . Pediatric Exercise Science, 26( 3), 250-258.
url: http://journals.humankinetics.com/doi/10.1123/pes.2013-0141
32 Etnier J. L., Salazar W., Landers D. M., Petruzzello S. J., Han M., & Nowell P . ( 1997). The influence of physical fitness and exercise upon cognitive functioning: A meta-analysis. Journal of Sport and Exercise Psychology, 19( 3), 249-277.
url: http://journals.humankinetics.com/doi/10.1123/jsep.19.3.249
33 Fabel K., Fabel K., Tam B., Kaufer D., Baiker A., Simmons N., .. Palmer T. D . ( 2003). VEGF is necessary for exercise-induced adult hippocampal neurogenesis. European Journal of Neuroscience, 18( 10), 2803-2812.
pmid: 14656329 url: http://www.blackwell-synergy.com/toc/ejn/18/10
34 Fink G. R., Frackowiak R. S., Pietrzyk U., & Passingham R. E . ( 1997). Multiple nonprimary motor areas in the human cortex. Journal of Neurophysiology, 77( 4), 2164-2174.
pmid: 9114263 url: http://www.physiology.org/doi/10.1152/jn.1997.77.4.2164
35 Flodin P., Martinsen S., Mannerkorpi K., Löfgren M., Bileviciute-Ljungar I., Kosek E., & Fransson P . ( 2015). Normalization of aberrant resting state functional connectivity in fibromyalgia patients following a three month physical exercise therapy. NeuroImage: Clinical, 9, 134-139.
url: https://linkinghub.elsevier.com/retrieve/pii/S2213158215001394
36 Friston K. J., Frith C. D., Liddle P. F ., & Frackowiak, R. S. J. ( 1993). Functional connectivity: The principal-component analysis of large (pet) data sets. Journal of Cerebral Blood Flow & Metabolism, 13( 1), 5-14.
pmid: 8417010 url: http://europepmc.org/abstract/MED/8417010
37 Girard I., & Garland, T. J . ( 2002). Plasma corticosterone response to acute and chronic voluntary exercise in female house mice. Journal of Applied Physiology, 92( 4), 1553-1561.
pmid: 11896022 url: http://www.physiology.org/doi/10.1152/japplphysiol.00465.2001
38 Gligoroska J. P., & Manchevska, S. ( 2012). The effect of physical activity on cognition -physiological mechanisms. Materia Socio-Medica, 24( 3), 198-202.
url: http://www.scopemed.org/?jid=16
39 Greicius M. D., Krasnow B., Reiss A. L., & Menon V . ( 2003). Functional connectivity in the resting brain: A network analysis of the default mode hypothesis. Proceedings of the National Academy of Sciences of the United States of America, 100( 1), 253-258.
pmid: 12506194 url: http://www.pnas.org/cgi/doi/10.1073/pnas.0135058100
40 Haring B., Leng X., Robinson J., Johnson K. C., Jackson R. D., Beyth R., .. Wassertheil‐Smoller S . ( 2013). Cardiovascular disease and cognitive decline in postmenopausal women: Results from the women's health initiative memory study. Journal of the American Heart Association, 2( 6), e000369.
41 Hayes S. M., Alosco M. L., & Forman D. E . ( 2014). The effects of aerobic exercise on cognitive and neural decline in aging and cardiovascular disease. Current Geriatrics Reports, 3( 4), 282-290.
url: http://link.springer.com/10.1007/s13670-014-0101-x
42 Heisz J. J., Clark I. B., Bonin K., Paolucci E. M., Michalski B., Becker S., & Fahnestock M . ( 2017). The effects of physical exercise and cognitive training on memory and neurotrophic factors. Journal of Cognitive Neuroscience, 29( 11), 1895-1907.
pmid: 28699808 url: http://www.mitpressjournals.org/doi/abs/10.1162/jocn_a_01164
43 Heyman E., Gamelin F. X., Goekint M., Piscitelli F., Roelands B., Leclair E., .. Meeusen R . ( 2012). Intense exercise increases circulating endocannabinoid and BDNF levels in humans-possible implications for reward and depression. Psychoneuroendocrinology, 37( 6), 844-854.
url: http://linkinghub.elsevier.com/retrieve/pii/S0306453011002873
44 Hindin S. B., & Zelinski, E. M . ( 2012). Extended practice and aerobic exercise interventions benefit untrained cognitive outcomes in older adults: A meta-analysis. Journal of the American Geriatrics Society, 60( 1), 136-141.
url: http://doi.wiley.com/10.1111/jgs.2012.60.issue-1
45 Ho A. J., Raji C. A., Becker J. T., Lopez O. L., Kuller L. H., Xue H., .. Thompson P. M . ( 2011). The effects of physical activity, education, and body mass index on the aging brain. Human Brain Mapping, 32( 9), 1371-1382.
pmid: 3184838 url: http://doi.wiley.com/10.1002/hbm.v32.9
46 Hohenfeld C., Nellessen N., Dogan I., Kuhn H., Müller C., Papa F., .. Reetz K . ( 2016). EP 131. Real-time fMRI neurofeedback training in elderly leads to cognitive improvement and changes in cerebral connectivity. Clinical Neurophysiology, 127( 9), e295-e296.
47 Hötting K., Reich B., Holzschneider K., Kauschke K., Schmidt T., Reer R., .. Röder B . ( 2012). Differential cognitive effects of cycling versus stretching/coordination training in middle-aged adults. Health Psychology: Official Journal of the Division of Health Psychology, American Psychological Association, 31( 2), 145-155.
url: http://doi.apa.org/getdoi.cfm?doi=10.1037/a0025371
48 Hötting K., & Röder, B. ( 2013). Beneficial effects of physical exercise on neuroplasticity and cognition. Neuroscience & Biobehavioral Reviews, 37( 9), 2243-2257.
pmid: 23623982 url: http://europepmc.org/abstract/med/23623982
49 Hötting K., Schauenburg G., & Röder B . ( 2012). Long- term effects of physical exercise on verbal learning and memory in middle-aged adults: Results of a one-year follow-up study. Brain Sciences, 2( 3), 332-346.
url: http://www.mdpi.com/2076-3425/2/3/332
50 Holzschneider K., Wolbers T., Röder B., & Hötting K . ( 2012). Cardiovascular fitness modulates brain activation associated with spatial learning. NeuroImage, 59( 3), 3003-3014.
pmid: 22027496 url: http://linkinghub.elsevier.com/retrieve/pii/S1053811911011840
51 Hsu C. L., Best J. R., Davis J. C., Nagamatsu L. S., Wang S., Boyd L. A., .. Liu-Ambrose T . ( 2018). Aerobic exercise promotes executive functions and impacts functional neural activity among older adults with vascular cognitive impairment. British Journal of Sports Medicine, 52( 3), 184-191.
url: http://bjsm.bmj.com/lookup/doi/10.1136/bjsports-2016-096846
52 Huxley R. R., Misialek J. R., Agarwal S. K., Loehr L. R., Soliman E. Z., Chen L. Y., & Alonso A . ( 2014). Physical activity, obesity, weight change, and risk of atrial fibrillation: The atherosclerosis risk in communities study. Circulation: Arrhythmia and Electrophysiology, 7( 4), 620-625.
url: https://www.ahajournals.org/doi/10.1161/CIRCEP.113.001244
53 Hyman C., Hofer M., Barde Y. A., Juhasz M., Yancopoulos G. D., Squinto S. P., & Lindsay R. M . ( 1991). BDNF is a neurotrophic factor for dopaminergic neurons of the substantia nigra. Nature, 350( 6315), 230-232.
pmid: 2005978 url: http://www.nature.com/doifinder/10.1038/350230a0
54 Ji L., Zhang H., Potter G. G., Zang Y. F., Steffens D. C., Guo H., & Wang L . ( 2017). Multiple neuroimaging measures for examining exercise-induced neuroplasticity in older adults: A quasi-experimental study. Frontiers in Aging Neuroscience, 9, 102.
url: http://journal.frontiersin.org/article/10.3389/fnagi.2017.00102/full
55 Kempermann G., Fabel K., Ehninger D., Babu H., Leal- Galicia P., Garthe A., & Wolf S. A . ( 2010). Why and how physical activity promotes experience-induced brain plasticity. Frontiers in Neuroscience, 4, 189.
pmid: 3000002 url: http://europepmc.org/articles/PMC3000002
56 Kim J. I., Jeong H. C., Won J. Y., Ka S. S., & Oh B. S . ( 2014). Effects of aerobic exercise on middle-aged male smokers' blood vessel health. Journal of Digital Convergence, 12( 4), 349-356.
url: http://www.researchgate.net/publication/272947544_Effects_of_Aerobic_Exercise_on_Middle-aged_Male_Smokers'_Blood_Vessel_Health
57 Klempin F., Beis D., Mosienko V., Kempermann G., Bader M., & Alenina N . ( 2013). Serotonin is required for exercise-induced adult hippocampal neurogenesis. Journal of Neuroscience, 33( 19), 8270-8275.
pmid: 23658167 url: http://www.jneurosci.org/cgi/doi/10.1523/JNEUROSCI.5855-12.2013
58 Köbe T., Witte A. V., Schnelle A., Lesemann A., Fabian S., Tesky V. A., .. Flöel A . ( 2016). Combined omega-3 fatty acids, aerobic exercise and cognitive stimulation prevents decline in gray matter volume of the frontal, parietal and cingulate cortex in patients with mild cognitive impairment. NeuroImage, 131, 226-235.
url: https://linkinghub.elsevier.com/retrieve/pii/S1053811915008721
59 Koirala G. R., Lee D., Eom S., Kim N. Y., & Kim H. D . ( 2017). Altered brain functional connectivity induced by physical exercise may improve neuropsychological functions in patients with benign epilepsy. Epilepsy & Behavior, 76, 126-132.
60 Kronenberg G., Bick-Sander A., Bunk E., Wolf C., Ehninger D., & Kempermann G . ( 2006). Physical exercise prevents age-related decline in precursor cell activity in the mouse dentate gyrus. Neurobiology of Aging, 27( 10), 1505-1513.
url: http://linkinghub.elsevier.com/retrieve/pii/S0197458005002605
61 Kylasov A., & Gavrov, S. ( 2011). Diversity of sport: Non-destructive evaluation (pp. 462-491). Paris: UNESCO: Encyclopedia of Life Support Systems.
62 Landeira B. S., Santana T. T., Araújo J. A. M., Tabet E. I., Tannous B. A., Schroeder T., & Costa M. R . ( 2016). Activity-independent effects of CREB on neuronal survival and differentiation during mouse cerebral cortex development. Cerebral Cortex, 28( 2), 538-548.
63 Lee J. K. W., Koh A. C. H., Koh S. X. T., Liu G. J. X., Nio A. Q. X ., & Fan, P. W. P. ( 2014). Neck cooling and cognitive performance following exercise-induced hyperthermia. European Journal of Applied Physiology, 114( 2), 375-384.
pmid: 24318656 url: http://link.springer.com/10.1007/s00421-013-2774-9
64 Leckie R. L., Oberlin L. E., Voss M. W., Prakash R. S., Szabo-Reed A., Chaddock-Heyman L., .. Erickson K. I . ( 2014). BDNF mediates improvements in executive function following a 1-year exercise intervention. Frontiers in Human Neuroscience, 8, 895.
pmid: 25566019 url: http://pubmedcentralcanada.ca/pmcc/articles/PMC4263078/
65 Liu-Ambrose T., Nagamatsu L. S., Voss M. W., Khan K. M., & Handy T. C . ( 2012). Resistance training and functional plasticity of the aging brain: A 12-month randomized controlled trial. Neurobiology of Aging, 33( 8), 1690-1698.
url: http://linkinghub.elsevier.com/retrieve/pii/S019745801100193X
66 Louis B., Erickson K. I., & Liu-Ambrose T . ( 2013). A review of the effects of physical activity and exercise on cognitive and brain functions in older adults. Journal of Aging Research, 2013, 657508.
67 Meeusen R., Smolders I., Sarre S., de Meirleir K., Keizer H., Serneels M., .. Michotte Y . ( 1997). Endurance training effects on neurotransmitter release in rat striatum: An in vivo microdialysis study. Acta Physiologica, 159( 4), 335-341.
68 Pajonk F. G., Wobrock T., Gruber O., Scherk H., Berner D., Kaizl I., .. Falkai P . ( 2010). Hippocampal plasticity in response to exercise in schizophrenia. Archives of General Psychiatry, 67( 2), 133-143.
url: http://archpsyc.jamanetwork.com/article.aspx?doi=10.1001/archgenpsychiatry.2009.193
69 Pedersen, B. K . ( 2017). Anti-inflammatory effects of exercise: Role in diabetes and cardiovascular disease. European Journal of Clinical Investigation, 47( 8), 600-611.
pmid: 28722106 url: http://doi.wiley.com/10.1111/eci.2017.47.issue-8
70 Piepmeier, A. T . ( 2015). A closer look at the role of BDNF as a causal link in the physical activity cognition relationship: A dose-response study (Unpublished doctorial dissertation). The University of North Carolina at Greensboro (UNCG).
71 Pierpaoli C., Jezzard P., Basser P. J., Barnett A., & Di Chiro G . ( 1996). Diffusion tensor MR imaging of the human brain. Radiology, 201( 3), 637-648.
pmid: 8939209 url: http://pubs.rsna.org/doi/10.1148/radiology.201.3.8939209
72 Prakash R. S., Voss M. W., Erickson K. I., & Kramer A. F . ( 2015). Physical activity and cognitive vitality. Annual Review of Psychology, 66, 769-797.
pmid: 25251492 url: http://www.annualreviews.org/doi/10.1146/annurev-psych-010814-015249
73 Rahe J., Petrelli A., Kaesberg S., Fink G. R., Kessler J., & Kalbe E . ( 2015). Effects of cognitive training with additional physical activity compared to pure cognitive training in healthy older adults. Clinical Interventions in Aging, 10, 297-310.
74 Rajab A. S., Crane D. E., Middleton L. E., Robertson A. D., Hampson M., & Macintosh B. J . ( 2014). A single session of exercise increases connectivity in sensorimotor- related brain networks: A resting-state fMRI study in young healthy adults. Frontiers in Human Neuroscience, 8, 625.
75 Rhyu I. J., Bytheway J. A., Kohler S. J., Lange H., Lee K. J., Boklewski J., .. Cameron J. L . ( 2010). Effects of aerobic exercise training on cognitive function and cortical vascularity in monkeys. Neuroscience, 167( 4), 1239-1248.
pmid: 3417752 url: http://linkinghub.elsevier.com/retrieve/pii/S0306452210003209
76 Roelofs E. J., Smith-Ryan A. E., Trexler E. T., Hirsch K. R., & Mock M. G . ( 2016). Effects of pomegranate extract on blood flow and vessel diameter after high-intensity exercise in young, healthy adults. European Journal of Sport Science, 17( 3), 317-325.
77 Schonewille M., Gao Z., Boele H. J., Veloz M. F. V., Amerika W. E., Šimek A. A ., .. de Zeeuw, C. I.( 2011). Reevaluating the role of ltd in cerebellar motor learning. Neuron, 70( 1), 43-50.
pmid: 21482355 url: http://linkinghub.elsevier.com/retrieve/pii/S0896627311001991
78 Shatil E., ( 2013). Does combined cognitive training and physical activity training enhance cognitive abilities more than either alone? A four-condition randomized controlled trial among healthy older adults. Frontiers in Aging Neuroscience, 5, 8.
79 Skriver K., Roig M., Lundbye-Jensen J., Pingel J., Helge J. W., Kiens B., & Nielsen J. B . ( 2014). Acute exercise improves motor memory: Exploring potential biomarkers. Neurobiology of Learning and Memory, 116, 46-85.
pmid: 25128877 url: http://linkinghub.elsevier.com/retrieve/pii/S1074742714001439
80 Stranahan A. M., Khalil D., & Gould E . ( 2007). Running induces widespread structural alterations in the hippocampus and entorhinal cortex. Hippocampus, 17( 11), 1017-1022.
url: http://doi.wiley.com/10.1002/%28ISSN%291098-1063
81 Stranahan A. M., & Mattson, M. P . ( 2012). Recruiting adaptive cellular stress responses for successful brain aging. Nature Reviews Neuroscience, 13( 3), 209-216.
pmid: 22251954 url: http://www.nature.com/articles/nrn3151
82 Streit W. J. ( 2002). Physiology and pathophysiology of microglial cell function. In: W. J. Streit (ed.), Microglia in the regenerating and degenerating central nervous system. New York: Springer.
url: http://link.springer.com/10.1007/978-1-4757-4139-1_1
83 Stroth S., Hille K., Spitzer M., & Reinhardt R . ( 2009). Aerobic endurance exercise benefits memory and affect in young adults. Neuropsychological Rehabilitation, 19( 2), 223-243.
pmid: 18609015 url: http://www.tandfonline.com/doi/abs/10.1080/09602010802091183
84 Swain R. A., Harris A. B., Wiener E. C., Dutka M. V., Morris H. D., Theien B. E., .. Greenough W. T . ( 2003). Prolonged exercise induces angiogenesis and increases cerebral blood volume in primary motor cortex of the rat. Neuroscience, 117( 4), 1037-1046.
url: http://linkinghub.elsevier.com/retrieve/pii/S0306452202006644
85 Tanne D., Freimark D., Poreh A., Merzeliak O., Bruck B., Schwammenthal Y., .. Adler Y . ( 2005). Cognitive functions in severe congestive heart failure before and after an exercise training program. International Journal of Cardiology, 103( 2), 145-149.
url: http://linkinghub.elsevier.com/retrieve/pii/S0167527304007144
86 Thomas A. G., Dennis A., Bandettini P. A., & Johansen- Berg H . ( 2012). The effects of aerobic activity on brain structure. Frontiers in Psychology, 3, 86.
pmid: 3311131 url: http://www.ncbi.nlm.nih.gov/pubmed/22470361
87 Tsai C. L., Chen F. C., Pan C. Y., Wang C. H., Huang T. H., & Chen T. C . ( 2014). Impact of acute aerobic exercise and cardiorespiratory fitness on visuospatial attention performance and serum BDNF levels. Psychoneuroendocrinology, 41, 121-131.
url: http://linkinghub.elsevier.com/retrieve/pii/S0306453013004502
88 van der Borght K., Kóbor-Nyakas D. E., Klauke K., Eggen B. J. L., Nyakas C., van der Zee, E. A., & Meerlo P . ( 2009). Physical exercise leads to rapid adaptations in hippocampal vasculature: Temporal dynamics and relationship to cell proliferation and neurogenesis. Hippocampus, 19( 10), 928-936.
url: http://doi.wiley.com/10.1002/hipo.v19%3A10
89 Vankim N. A., & Nelson, T. F . ( 2013). Vigorous physical activity, mental health, perceived stress, and socializing among college students. American Journal of Health Promotion, 28( 1), 7-15.
url: http://journals.sagepub.com/doi/10.4278/ajhp.111101-QUAN-395
90 Vaynman S., Ying Z., Wu A., & Gomez-Pinilla F . ( 2006). Coupling energy metabolism with a mechanism to support brain-derived neurotrophic factor-mediated synaptic plasticity. Neuroscience, 139( 4), 1221-1234.
url: http://linkinghub.elsevier.com/retrieve/pii/S0306452206001382
91 Voelcker-Rehage C., & Niemann, C. ( 2013). Structural and functional brain changes related to different types of physical activity across the life span. Neuroscience & Biobehavioral Reviews, 37( 9), 2268-2295.
92 Voss M. W., Prakash R. S., Erickson K. I., Basak C., Chaddock L., Kim J. S., .. Kramer A. F . ( 2010). Plasticity of brain networks in a randomized intervention trial of exercise training in older adults. Frontiers in Aging Neuroscience, 2, 32.
93 Voss M. W., Vivar C., Kramer A. F., & van Praag H . ( 2013). Bridging animal and human models of exercise- induced brain plasticity. Trends in Cognitive Sciences, 17( 10), 525-544.
pmid: 4565723 url: http://linkinghub.elsevier.com/retrieve/pii/S1364661313001666
94 Wang Y., Kang J., Kemmer P. B., & Guo Y . ( 2016). An efficient and reliable statistical method for estimating functional connectivity in large scale brain networks using partial correlation. Frontiers in Neuroscience, 10, 123.
95 Wong, R. Y . ( 2017). Physical exercise, cognition, and function in older people. Journal of the American Medical Directors Association, 18( 4), 282-283.
pmid: 28236611 url: https://linkinghub.elsevier.com/retrieve/pii/S1525861017300324
96 Wrann C. D., White J. P., Salogiannnis J., Laznik-Bogoslavski D., Wu J., Ma D., .. Spiegelman B. M . ( 2013). Exercise induces hippocampal BDNF through a PGC-1α/FNDC5 pathway. Cell Metabolism, 18( 5), 649-659.
pmid: 3980968 url: http://linkinghub.elsevier.com/retrieve/pii/S155041311300377X
97 Xiong J. Y., Li S. C., Sun Y. X., Zhang X. S., Dong Z. Z., Zhong P., & Sun X. R . ( 2015). Long-term treadmill exercise improves spatial memory of male appswe/ps1de9 mice by regulation of BDNF expression and microglia activation. Biology of Sport, 32( 4), 295-300.
url: http://183.indexcopernicus.com/abstracted.php?level=5&ICID=1163692
98 Ziegler G., Dahnke R., Jäncke L., Yotter R. A., May A., & Gaser C . ( 2012). Brain structural trajectories over the adult lifespan. Human Brain Mapping, 33( 10), 2377-2389.
pmid: 21898677 url: http://doi.wiley.com/10.1002/hbm.v33.10
99 Zochodne, D. W . ( 2014). Mechanisms of diabetic neuron damage: Molecular pathways. Handbook of Clinical Neurology, 126, 379-399.
url: https://linkinghub.elsevier.com/retrieve/pii/B978044453480400028X
[1] TONG Wei, CHEN Taolin, HUANG Xiaoqi, GONG Qiyong, FANG Xiaoyi.  Episodic and background craving: Distinguishing pathway of caving effect on nicotine addition[J]. Advances in Psychological Science, 2017, 25(11): 1932-1941.
[2] LI Songqing; ZHAO Qingbai; ZHOU Zhijin; ZHANG Yi. The Cognitive and Neural Mechanism of Text and Picture Processing in Multimedia Learning[J]. Advances in Psychological Science, 2015, 23(8): 1361-1370.
[3] HAN Shi-Hui;ZHANG Yi-Fan. A Cultural Neuroscience Approach to Self-Concept Representation[J]. , 2012, 20(5): 633-640.
[4] DING Guo-Sheng;LI Yan-Yan. The Role of Early Sign-language Experience in Shaping the Structure and Function of the Deaf Brain[J]. , 2012, 20(3): 328-337.
[5] SHEN Wang-Bing;LIU Chang;CHEN Jing–Jing. Neural Basis of Creativity: Evidence From Structural and Functional Imaging[J]. , 2010, 18(09): 1420-1429.
[6] WANG Nai-Yi; LUO Yue-Jia; DONG Qi. Neural Correlates of Aesthetics[J]. , 2010, 18(01): 19-27.
[7] LIU Cong-Hui;WANG Yong-Mei;YU Guo-Liang;WANG Yong-Jun. Related Theories and Exploration on Dynamic Model of Empathy[J]. , 2009, 17(05): 964-972.
[8] FU Yan;WANG Da-Hua. Cognitive Aging and the Brain: HAROLD Model Debate[J]. , 2009, 17(01): 86-91.
[9] CUI Fang;NAN Yun;LUO Yue-Jia. A Review of Cognitive Neuroscience Studies on Empathy[J]. , 2008, 16(02): 250-254.
[10] Gao Bing;Cao Hui;Cao Pin. The Brain Mechanism of Syntactic Processing[J]. , 2006, 14(01): 32-39.
[11] Luo Jing,Ying Xiaoping. Thinking and Language: Evidences from Cognitive Neuroscience[J]. , 2005, 13(04): 454-465.
[12] Zhang Zhijie,Huang Xiting. The Brain Mechanism Of Temporal Cognition[J]. , 2003, 11(01): 44-48.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
Copyright © Advances in Psychological Science
Support by Beijing Magtech