Please wait a minute...
Advances in Psychological Science    2018, Vol. 26 Issue (9) : 1608-1616     DOI: 10.3724/SP.J.1042.2018.01608
Regular Articles |
The role of working memory representation in visual search: The perspective of non-target template
Yangzhuo LI,Xucheng YANG,Hong GAO,Xiangping GAO()
Department of Psychology, School of Education, Shanghai Normal University, Shanghai 200234, China
Download: PDF(369 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks     Supporting Info
Guide   
Abstract  

The contents of visual working memory (VWM) have been repeatedly found to be linked with attention allocation during visual searching. While the target representation in working memory (target template) was found to affect memory-driven attentional capture in a top-down manner, non-target representation in working memory (non-target template) can also affect attentional selection. The present article reviews existing literature on the modulation of attentional selection by non-target template stored in visual working memory. It is concluded that non-target presentations can not only automatically bias attention to information that matches the non-target template, but also benefit visual search performance by strategically suppressing items that matches the non-target template. The suppression functions of non-target template were affected by several factors including experiment paradigm, task difficulty, characteristics of stimuli and level of cognitive control. Future research should be aimed towards further investigation of its properties and promote both basic and applied research.

Keywords selective attention      visual working memory      non-target template      attentional capture      attentional suppression     
ZTFLH:  B842  
Corresponding Authors: Xiangping GAO     E-mail: gaoxp@shnu.edu.cn
Issue Date: 30 July 2018
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Yangzhuo LI
Xucheng YANG
Hong GAO
Xiangping GAO
Cite this article:   
Yangzhuo LI,Xucheng YANG,Hong GAO, et al. The role of working memory representation in visual search: The perspective of non-target template[J]. Advances in Psychological Science, 2018, 26(9): 1608-1616.
URL:  
http://journal.psych.ac.cn/xlkxjz/EN/10.3724/SP.J.1042.2018.01608     OR     http://journal.psych.ac.cn/xlkxjz/EN/Y2018/V26/I9/1608
1 胡艳梅, 张明, 徐展, 李毕琴 . ( 2013). 客体工作记忆对注意的导向作用: 抑制动机的影响. 心理学报, 45( 2), 127-138.
url: http://www.cnki.com.cn/Article/CJFDTotal-XLXB201302002.htm
2 胡艳梅, 张明 . ( 2016). 基于记忆的注意捕获和注意抑制效应: ERP证据. 心理学报, 48( 1), 12-21.
url: http://d.wanfangdata.com.cn/Periodical/xlxb201601002
3 纪丽燕, 陈宁轩, 丁锦红, 魏萍 . ( 2015). 奖赏预期调节局部注意干扰效应. 心理学报, 47( 6), 721-733.
url:
4 于斌, 乐国安, 刘惠军 . ( 2014). 工作记忆能力与自我调控. 心理科学进展, 22( 5), 772-781.
url: http://journal.psych.ac.cn/xlkxjz/CN/article/article3081.shtml
5 张豹, 胡岑楼, 黄赛 . ( 2016). 认知控制在工作记忆表征引导注意中的作用: 来自眼动的证据. 心理学报, 48( 9), 1105-1118.
url: http://d.wanfangdata.com.cn/Periodical/xlxb201609005
6 张豹, 黄赛, 候秋霞 . ( 2014). 工作记忆表征捕获眼动中的颜色优先性. 心理学报, 46( 1), 17-26.
url: http://d.wanfangdata.com.cn/Periodical/xlxb201401003
7 张明, 张阳 . ( 2007). 工作记忆与选择性注意的交互关系. 心理科学进展, 15( 1), 8-15.
url:
8 Anderson B. A., Laurent P. A., & Yantis S. ( 2013). Reward predictions bias attentional selection. Frontiers in Human Neuroscience, 7: 262.
pmid: 3678100 url: http://www.ncbi.nlm.nih.gov/pubmed/23781185
9 Anderson D. E., Vogel E. K., & Awh E. ( 2013). A common discrete resource for visual working memory and visual search. Psychological Science, 24( 6), 929-938.
pmid: 23572280 url: http://journals.sagepub.com/doi/10.1177/0956797612464380
10 Arita J. T., Carlisle N. B., & Woodman G. F. ( 2012). Templates for rejection: configuring attention to ignore task-irrelevant features. Journal of Experimental Psychology: Human Perception and Performance, 38( 3), 580-584.
pmid: 3817824 url: http://doi.apa.org/getdoi.cfm?doi=10.1037/a0027885
11 Beck, V. M., & Hollingworth, A. ( 2015). Evidence for negative feature guidance in visual search is explained by spatial recoding. Journal of Experimental Psychology: Human Perception and Performance, 41( 5), 1190-1196.
pmid: 26191616 url: http://doi.apa.org/getdoi.cfm?doi=10.1037/xhp0000109
12 Becker M. W., Hemsteger S., & Peltier C. ( 2015). No templates for rejection: A failure to configure attention to ignore task-irrelevant features. Visual Cognition, 23( 9-10), 1150-1167.
url: http://www.tandfonline.com/doi/full/10.1080/13506285.2016.1149532
13 Berridge, K. C., & Robinson, T. E. ( 1998). What is the role of dopamine in reward: hedonic impact, reward learning, or incentive salience?. Brain Research Reviews, 28( 3), 309-369.
url: http://linkinghub.elsevier.com/retrieve/pii/S0165017398000198
14 Bucker, B., & Theeuwes, J. ( 2017). Pavlovian reward learning underlies value driven attentional capture. Attention, Perception, & Psychophysics, 79( 2), 415-428.
pmid: 5306301 url: http://pubmedcentralcanada.ca/pmcc/articles/PMC5306301/
15 Carlisle, N. B., & Woodman, G. F. ( 2011). When memory is not enough: Electrophysiological evidence for goal-dependent use of working memory representations in guiding visual attention. Journal of Cognitive Neuroscience, 23( 10), 2650-2664.
url: http://www.mitpressjournals.org/doi/10.1162/jocn.2011.21602
16 Chelazzi L., Duncan J., Miller E. K., & Desimone R. ( 1998). Responses of neurons in inferior temporal cortex during memory-guided visual search. Journal of Neurophysiology, 80( 6), 2918-2940.
pmid: 9862896 url: http://www.physiology.org/doi/10.1152/jn.1998.80.6.2918
17 Chelazzi L., Perlato A., Santandrea E., & Della Libera C. ( 2013). Rewards teach visual selective attention. Vision research, 85, 58-72.
pmid: 23262054 url: http://linkinghub.elsevier.com/retrieve/pii/S0042698912003951
18 Desimone, R. ( 1998). Visual attention mediated by biased competition in extrastriate visual cortex. Philosophical Transactions of the Royal Society B: Biological Sciences, 353( 1373), 1245-1255.
pmid: 9770219 url: http://rstb.royalsocietypublishing.org/cgi/doi/10.1098/rstb.1998.0280
19 Desimone, R., & Duncan, J. ( 1995). Neural mechanisms of selective visual attention. Annual review of neuroscience, 18( 1), 193-222.
url: http://www.annualreviews.org/doi/10.1146/annurev.ne.18.030195.001205
20 Dodd, M. D., & Flowers, J. ( Eds.). ( 2012). The influence of attention, learning, and motivation on visual search. Nebraska Symposium on Motivation, 59( 1-4).
url: http://link.springer.com/10.1007/978-1-4614-4794-8
21 Dowd E. W., Kiyonaga A., Egner T., & Mitroff S. R. ( 2015). Attentional guidance by working memory differs by paradigm: An individual-differences approach. Attention, Perception, & Psychophysics, 77( 3), 704-712.
pmid: 25737257 url: http://link.springer.com/article/10.3758/s13414-015-0847-z
22 Downing, P. E. ( 2000). Interactions between visual working memory and selective attention. Psychological Science, 11( 6), 467-473.
pmid: 11202491 url: http://journals.sagepub.com/doi/10.1111/1467-9280.00290
23 Downing, P., & Dodds, C. M. ( 2004). Competition in visual working memory for control of search. Visual Cognition, 11( 6), 689-703.
url: https://www.tandfonline.com/doi/full/10.1080/13506280344000446
24 Gaspar, J. M., & McDonald, J. J. ( 2014). Suppression of salient objects prevents distraction in visual search. Journal of neuroscience, 34( 16), 5658-5666.
pmid: 24741056 url: http://www.jneurosci.org/cgi/doi/10.1523/JNEUROSCI.4161-13.2014
25 Geng, J. J. ( 2014). Attentional mechanisms of distractor suppression. Current Directions in Psychological Science, 23( 2), 147-153.
url: http://journals.sagepub.com/doi/10.1177/0963721414525780
26 Geng, J. J., & DiQuattro, N. E. ( 2010). Attentional capture by a perceptually salient non-target facilitates target processing through inhibition and rapid rejection. Journal of Vision, 10( 6), 5-5.
27 Gong, M. Y., & Li, S. ( 2014). Learned reward association improves visual working memory. Journal of Experimental Psychology: Human Perception and Performance, 40( 2), 841-856.
pmid: 24392741 url: http://doi.apa.org/getdoi.cfm?doi=10.1037/a0035131
28 Gong M. Y., Jia K., & Li S. ( 2017). Perceptual competition promotes suppression of reward salience in behavioral selection and neural representation. Journal of Neuroscience, 37( 26), 6242-6252.
url: http://www.jneurosci.org/lookup/doi/10.1523/JNEUROSCI.0217-17.2017
29 Gong M. Y., Yang F., & Li S. ( 2016). Reward association facilitates distractor suppression in human visual search. European Journal of Neuroscience, 43( 7), 942-953.
pmid: 26797805 url: http://onlinelibrary.wiley.com/doi/10.1111/ejn.13174/pdf
30 Han, S. W., & Kim, M. S. ( 2009). Do the contents of working memory capture attention? Yes, but cognitive control matters. Journal of Experimental Psychology: Human Perception and Performance, 35( 5), 1292-1302.
pmid: 19803637 url: http://doi.apa.org/getdoi.cfm?doi=10.1037/a0016452
31 Hickey C., Chelazzi L., & Theeuwes J. ( 2010). Reward changes salience in human vision via the anterior cingulate. Journal of Neuroscience, 30( 33), 11096-11103.
pmid: 20720117 url: http://www.jneurosci.org/cgi/doi/10.1523/JNEUROSCI.1026-10.2010
32 Hickey C., McDonald J. J., & Theeuwes J. ( 2006). Electrophysiological evidence of the capture of visual attention. Journal of Cognitive Neuroscience, 18( 4), 604-613.
pmid: 16768363 url: http://www.mitpressjournals.org/doi/10.1162/jocn.2006.18.4.604
33 Hu Y., Xu Z., & Hitch G. J. ( 2011). Strategic and automatic effects of visual working memory on attention in visual search. Visual Cognition, 19( 6), 799-816.
url: http://www.tandfonline.com/doi/abs/10.1080/13506285.2011.590461
34 Kiyonaga A., Egner T., & Soto D. ( 2012). Cognitive control over working memory biases of selection. Psychonomic Bulletin & Review, 19( 4), 639-646.
pmid: 3394896 url: http://link.springer.com/article/10.3758/s13423-012-0253-7
35 Kumar S., Soto D., & Humphreys G. W. ( 2009). Electrophysiological evidence for attentional guidance by the contents of working memory. European Journal of Neuroscience, 30( 2), 307-317.
pmid: 19691812 url: http://blackwell-synergy.com/doi/abs/10.1111/ejn.2009.30.issue-2
36 Mevorach C., Hodsoll J., Allen H., Shalev L., & Humphreys G. ( 2010). Ignoring the elephant in the room: a neural circuit to downregulate salience. Journal of Neuroscience, 30( 17), 6072-6079.
pmid: 20427665 url: http://www.jneurosci.org/cgi/doi/10.1523/JNEUROSCI.0241-10.2010
37 Mine, C., & Saiki, J. ( 2015). Task-irrelevant stimulus-reward association induces value-driven attentional capture. Attention, Perception, & Psychophysics, 77( 6), 1896-1907.
pmid: 25893470 url: http://www.ncbi.nlm.nih.gov/pubmed/25893470
38 Olivers, C. N. L. ( 2009). What drives memory-driven attentional capture? The effects of memory type, display type, and search type. Journal of Experimental Psychology: Human Perception and Performance, 35( 5), 1275-1291.
url: http://doi.apa.org/getdoi.cfm?doi=10.1037/a0013896
39 Olivers, C. N. L., & Humphreys, G. W. ( 2003). Visual marking inhibits singleton capture. Cognitive Psychology, 47( 1), 1-42.
pmid: 12852934 url: http://linkinghub.elsevier.com/retrieve/pii/S0010028503000033
40 Olivers C. N. L., Meijer F., & Theeuwes J. ( 2006). Feature-based memory-driven attentional capture: visual working memory content affects visual attention. Journal of Experimental Psychology: Human Perception and Performance, 32( 5), 1243-1265.
url: http://doi.apa.org/getdoi.cfm?doi=10.1037/0096-1523.32.5.1243
41 Olivers C. N. L., Peters J., Houtkamp R., & Roelfsema P. R. ( 2011). Different states in visual working memory: When it guides attention and when it does not. Trends in Cognitive Sciences, 15( 7), 327-334.
url: http://118.145.16.217/magsci/article/article?id=15399155
42 Pessoa, L., & Engelmann, J. B. ( 2010). Embedding reward signals into perception and cognition. Frontiers in neuroscience, 4: 17.
pmid: 2940450 url: http://europepmc.org/articles/PMC2940450/
43 Peters J. C., Goebel R., & Roelfsema P. R. ( 2009). Remembered but unused: the accessory items in working memory that do not guide attention. Journal of Cognitive Neuroscience, 21( 6), 1081-1091.
pmid: 18702589 url: http://www.mitpressjournals.org/doi/10.1162/jocn.2009.21083
44 Sawaki R., Geng J. J., & Luck S. J. ( 2012). A common neural mechanism for preventing and terminating the allocation of attention. Journal of Neuroscience, 32( 31), 10725-10736.
pmid: 3488698 url: http://www.jneurosci.org/cgi/doi/10.1523/JNEUROSCI.1864-12.2012
45 Sawaki, R., & Luck, S. J. ( 2010). Capture versus suppression of attention by salient singletons: Electrophysiological evidence for an automatic attend-to-me signal. Attention, Perception, & Psychophysics, 72( 6), 1455-1470.
url: http://118.145.16.217/magsci/article/article?id=17084761
46 Sawaki, R., & Luck, S. J. ( 2011). Active suppression of distractors that match the contents of visual working memory. Visual Cognition, 19( 7), 956-972.
pmid: 22053147 url: http://www.tandfonline.com/doi/abs/10.1080/13506285.2011.603709
47 Sawaki, R., & Luck, S. J. ( 2013). Active suppression after involuntary capture of attention. Psychonomic Bulletin & Review, 20( 2), 296-301.
pmid: 23254574 url: http://pubmedcentralcanada.ca/pmcc/articles/PMC3845459/
48 Soto D., Greene C. M., Chaudhary A., & Rotshtein P. ( 2011). Competition in working memory reduces frontal guidance of visual selection. Cerebral Cortex, 22( 5), 1159-1169.
pmid: 21775675 url: http://test.europepmc.org/abstract/MED/21775675
49 Soto D., Heinke D., Humphreys G. W., & Blanco M. J. ( 2005). Early, involuntary top-down guidance of attention from working memory. Journal of Experimental Psychology: Human Perception and Performance, 31( 2), 248-261.
pmid: 15826228 url: http://doi.apa.org/getdoi.cfm?doi=10.1037/0096-1523.31.2.248
50 Soto D., Hodsoll J., Rotshtein P., & Humphreys G. W. ( 2008). Automatic guidance of attention from working memory. Trends in Cognitive Sciences, 12( 9), 342-348.
pmid: 18693131 url: http://linkinghub.elsevier.com/retrieve/pii/S1364661308001769
51 Soto D., Llewelyn D., & Silvanto J. ( 2012). Distinct causal mechanisms of attentional guidance by working memory and repetition priming in early visual cortex. Journal of Neuroscience, 32( 10), 3447-3452.
url: http://www.jneurosci.org/cgi/doi/10.1523/JNEUROSCI.6243-11.2012
52 Soto D., Mok A. Y. F., McRobbie D., Quest R., Waldman A., & Rotshtein P. ( 2011). Biasing visual selection: functional neuroimaging of the interplay between spatial cueing and feature memory guidance. Neuropsychologia, 49( 6), 1537-1543.
url: http://linkinghub.elsevier.com/retrieve/pii/S0028393210005154
53 Soto D., Rotshtein P., & Kanai R. ( 2014). Parietal structure and function explain human variation in working memory biases of visual attention. Neuroimage, 89, 289-296.
url: http://linkinghub.elsevier.com/retrieve/pii/S1053811913011609
54 Tan J. F., Zhao Y. F., Wang, L. J, Tian, X., Cui Y., Yang Q., .. & Chen A. ( 2015). The competitive influences of perceptual load and working memory guidance on selective attention. PloS One, 10( 6), e0129533. 9
55 Theeuwes, J. ( 1991). Cross-dimensional perceptual selectivity. Perception, & Psychophysics, 50( 2), 184-193.
url: http://dx.doi.org/ption,
56 van Moorselaar D., Theeuwes J., & Olivers, C. N. L. ( 2014). In competition for the attentional template: Can multiple items within visual working memory guide attention? Journal of Experimental Psychology: Human Perception and Performance, 40( 4), 1450-1464.
url: http://doi.apa.org/getdoi.cfm?doi=10.1037/a0036229
57 Wang L. H., Yu H. G., Hu J., Theeuwes J., Gong X. L., Xiang Y., .. & Zhou, X. L. ( 2015). Reward breaks through center‐surround inhibition via anterior insula. Human Brain Mapping, 36( 12), 5233-5251.
pmid: 26416017 url: http://doi.wiley.com/10.1002/hbm.23004
58 Watson, D. G., & Humphreys, G. W. ( 1997). Visual marking: prioritizing selection for new objects by top-down attentional inhibition of old objects. Psychological Review, 104( 1), 90-122.
url: http://doi.apa.org/getdoi.cfm?doi=10.1037/0033-295X.104.1.90
59 Wolfe, J. M. ( 2007). Guided search 4.0. Integrated Models of Cognitive Systems, 99-119.
60 Woodman, G. F. ( 2010). A brief introduction to the use of event-related potentials in studies of perception and attention. Attention, Perception, & Psychophysics, 72( 8), 2031-2046.
url: http://118.145.16.217/magsci/article/article?id=17086827
61 Woodman, G. F., & Luck, S. J. ( 2007). Do the contents of visual working memory automatically influence attentional selection during visual search? Journal of Experimental Psychology: Human Perception and Performance, 33( 2), 363-377.
url: http://dx.doi.org/10.1037/0096-1523.33.2.363
62 Yantis, S. ( 2000). Goal-directed and stimulus-driven determinants of attentional control. Attention and performance, 18, 73-103.
url: http://www.researchgate.net/publication/246333239_3_Goal-Directed_and_Stimulus-Driven_Determinants_of_Attentional_Control
63 Yantis, S., & Egeth, H. E. ( 1999). On the distinction between visual salience and stimulus-driven attentional capture. Journal of Experimental Psychology: Human Perception and Performance, 25( 3), 661-676.
pmid: 10385983 url: http://doi.apa.org/getdoi.cfm?doi=10.1037/0096-1523.25.3.661
64 Zhang B., Zhang J. X., Kong L. Y., Huang S., Yue Z. Z., & Wang S. ( 2010). Guidance of visual attention from working memory contents depends on stimulus attributes. Neuroscience Letters, 486( 3), 202-206.
url: http://linkinghub.elsevier.com/retrieve/pii/S0304394010012693
[1] ZANG Xuelian, ZHANG Xiaoxiao, JIA Lina, LI Genqiang, LI Hong.  The effect of selective attention in contextual cueing[J]. Advances in Psychological Science, 2017, 25(9): 1503-1511.
[2] Yanan Chen; Feng Du. Two visual working memory representations simultaneously and involuntarily control attention[J]. Advances in Psychological Science, 2016, 24(Suppl.): 80-.
[3] Meirong Sun; Encong Wang; Ye Tao; Jing Huang; Chenguang Zhao; Jialang Guo; Yan Song. Distinct developmental patterns in Attentional Selection and Suppression[J]. Advances in Psychological Science, 2016, 24(Suppl.): 48-.
[4] Zhang Haihang; Shen Mowei; Zhou Jifan. High Visual Working Memory Resolution for Cooperation-oriented People[J]. Advances in Psychological Science, 2016, 24(Suppl.): 42-.
[5] CAI Wei; WU Song; KOU Yu. Power and prosocial behaviour: How and why power affects prosocial behaviour[J]. Advances in Psychological Science, 2016, 24(1): 120-131.
[6] HE Xu;GUO Chunyan. Capacity and Resource Allocation of Visual Working Memory[J]. Advances in Psychological Science, 2013, 21(10): 1741-1748.
[7] WEI Ping;KANG Guan-Lan. The Brain Mechanisms of Reward Cue in Triggering and Modulating Fronto-parietal Attentional Network in Visual Search[J]. , 2012, 20(6): 798-804.
[8] ZHANG Ming;WANG Ai-Jun. Working Memory Content-based Attentional Capture and Suppression in the Visual Search[J]. Advances in Psychological Science, 2012, 20(12): 1899-1907.
[9]

WEI Ping;ZHOU Xiao-Lin

. The Brain Mechanisms for Processing Heterogeneous Distracting Information Along Task-Relevant and -Irrelevant Dimensions in Visual Search[J]. , 2011, 19(6): 794-802.
[10] SUN Hui-Ming;FU Xiao-Lan. Mechanism of Visual Working Memory Consolidation: Vulcanization or Recession?[J]. , 2011, 19(11): 1605-1614.
[11] WEI Liu-Qing;ZHANG Xue-Min;LIU Bing;LU Xue-Ming;LI Ying-Di. The Pattern and Cognitive Mechanism of Visual Multiple Object Tracking[J]. , 2010, 18(12): 1919-1925.
[12] SHAN Xi-Jiao;LI Shou-Xin. The New Development of Mechanism of Visual Working Memory Capacity Based on New Models[J]. , 2010, 18(11): 1684-1691.
[13] LIU Fei; WANG En-Guo. The Status and Prospect in Research on Working Memory of Objects[J]. , 2010, 18(02): 200-209.
[14] XU Li-Juan; HUANG Ying; WU Xi-Hong; WU Yan-Hong; LI Liang. Effects of Perceptual Cues on Releasing Speech From Informational Masking[J]. , 2009, 17(02): 261-267.
[15] Dai Qin;Feng Zhengzhi.

Attentional Bias in Major Depressive Disorder

[J]. , 2008, 16(02): 260-265.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
Copyright © Advances in Psychological Science
Support by Beijing Magtech