Please wait a minute...
Advances in Psychological Science    2018, Vol. 26 Issue (7) : 1165-1173     DOI: 10.3724/SP.J.1042.2018.01165
Research Reports |
Modern dance training and string instrument training have different effects on grey matter architecture
Gujing LI,Xin LI,Hui HE,Cheng LUO,Dezhong YAO()
School of Life Science And Technology, University of Electronic Science and Technology of China, Chengdu, 610054, China
Download: PDF(1291 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks     Supporting Info
Guide   
Abstract  

The discrepant effects of dance and music training on gray matter volume are still unknown. In this study, We used voxel-based morphometry (VBM) method to analyze the structural magnetic resonance imaging (sMRI) data of modern dancers, string instrument players and controls subjects. Our results showed increased gray matter volume (GMV) among cortical, subcortical and the cerebellum areas within the modern dancers and localized cortical regions in the string instrument players respectively. Moreover, among the three groups only modern dancers showed decreased GMV between cortical and subcortical regions. The results suggested a systematical and widespread effects of modern dance training as well as an effector-specific training outcome in the auditory-motor-semantic cortex of the string instrument players.

Keywords modern dance training      string instrument training      voxel-based morphometry (VBM)     
ZTFLH:  B845  
Corresponding Authors: Dezhong YAO     E-mail: dyao@uestc.edu.cn
Issue Date: 29 May 2018
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Gujing LI
Xin LI
Hui HE
Cheng LUO
Dezhong YAO
Cite this article:   
Gujing LI,Xin LI,Hui HE, et al. Modern dance training and string instrument training have different effects on grey matter architecture[J]. Advances in Psychological Science, 2018, 26(7): 1165-1173.
URL:  
http://journal.psych.ac.cn/xlkxjz/EN/10.3724/SP.J.1042.2018.01165     OR     http://journal.psych.ac.cn/xlkxjz/EN/Y2018/V26/I7/1165
人口学变量 现代舞训练组 弦乐训练组 对照组 p
性别(男/女) 5/13 7/13 8/17 0.892
年龄(岁) 19.00 ± 1.41 19.05 ± 1.19 19.24 ± 0.87 0.765 df (2,60)
教育水平(年) 12.83 ± 1.33 13.05 ± 1.09 13.20 ± 1.11 0.574 df (2,60)
训练年限(年) 11.44 ± 3.24 11.33 ± 2.72 0.282 df (36)
  
脑区 MNI坐标 体素
个数
F(2,60)值
(最大点)
dan-con dan-
con (p)
dan-
con (t41)
mus-con mus-
con (p)
mus-
con (t43)
mus-dan mus-dan (p) mus-
dan (t36)
x y z
Cerebelum_
Crus1_R
33 -58 -40 32 9.99 p < 0.05 0.01029 2.69 0.07979 -1.79 p < 0.001 0.00029 -4.01
Frontal_
Med_Orb_R
6 40 -6 82 11.29 p < 0.001 0.00039 3.86 0.74462 -0.33 p < 0.001 0.00058 -3.76
Thalamus_R 12 -21 -1 267 18.05 p < 0.001 0.00028 -3.97 0.16760 1.40 p < 0.001 0.00001 5.26
Thalamus_L -10 -16 1 240 13.33 p < 0.001 0.00036 -3.89 0.26093 1.14 p < 0.001 0.00001 5.26
Temporal_
Sup_R
55 -15 1 131 13.47 0.74732 0.32 p < 0.001 0.00002 4.80 p < 0.001 0.00090 3.61
Putamen_R 25 4 13 112 12.88 p < 0.001 0.00009 4.33 0.29734 1.05 p < 0.01 0.00233 -3.27
Supp_Motor_
Area_R
6 1 63 128 11.83 p < 0.01 0.00161 -3.38 0.34007 0.96 p < 0.001 0.00001 5.12
Precentral_L -34 -6 58 120 12.12 p < 0.01 0.00564 -2.92 p < 0.05 0.04677 2.05 p < 0.001 0.00004 4.68
Frontal_
Mid_R
42 -3 57 71 11.30 0.23886 -1.20 p < 0.01 0.00225 3.24 p < 0.001 0.00003 4.77
  
  
1 段旭君 . ( 2013). 基于大尺度脑网络分析方法的脑可塑性研究(博士学位论文). 电子科技大学, 成都.
2 蒋存梅 . ( 2016). 音乐心理学. 上海: 华东师范大学出版社.
3 马清 . ( 2000). 音乐理论与管弦乐基础. 北京: 北京大学出版社.
4 平心 . ( 2004). 舞蹈心理学. 北京: 高等教育出版社.
5 吕艺生 . ( 2003). 舞蹈学导论. 上海: 上海音乐出版社.
6 覃嫔 . ( 2018). 舞蹈艺术的训练研究. 北京: 北京理工大学出版社.
7 周临舒, 赵怀阳, 蒋存梅 . ( 2017). 音乐表演训练对神经可塑性的影响: 元分析研究. 心理科学进展, 25( 11), 1877-1887.
url: http://www.cqvip.com/QK/80511X/201711/674172401.html
8 Ashburner, J., & Friston K. J, . ( 2000). Voxel-based morphometry--the methods. NeuroImage, 11, 805-821.
url: http://linkinghub.elsevier.com/retrieve/pii/S1053811900905822
9 Ashburner, J., & Friston K. J, . ( 2005). Unified segmentation. NeuroImage, 26( 3), 839-851.
url: http://linkinghub.elsevier.com/retrieve/pii/S1053811905001102
10 Bangert M., Peschel T., Schlaug G., Rotte M., Drescher D., Hinrichs H., .. Altenmüller E . ( 2006). Shared networks for auditory and motor processing in professional pianists: Evidence from fMRI conjunction. NeuroImage, 30( 3), 917-926.
pmid: 16380270 url: http://linkinghub.elsevier.com/retrieve/pii/S1053811905024158
11 Bangert, M., & Schlaug G. , ( 2006). Specialization of the specialized in features of external human brain morphology. European Journal of Neuroscience, 24( 6), 1832-1834.
pmid: 1700494617004946 url: http://blackwell-synergy.com/doi/abs/10.1111/ejn.2006.24.issue-6
12 Baumann S., Koeneke S., Schmidt C. F., Meyer M., Lutz K., & Jancke L . ( 2007). A network for audio-motor coordination in skilled pianists and non-musicians. Brain Research, 1161, 65-78.
pmid: 17603027 url: http://linkinghub.elsevier.com/retrieve/pii/S0006899307012462
13 Bermudez P., Lerch J. P., Evans A. C., & Zatorre R. J . ( 2009). Neuroanatomical correlates of musicianship as revealed by cortical thickness and voxel-based morphometry. Cerebral Cortex, 19( 7), 1583-1596.
pmid: 19073623 url: https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhn196
14 Bostan A. C., Dum R. P., & Strick P. L . ( 2013). Cerebellar networks with the cerebral cortex and basal ganglia. Trends in Cognitive Sciences, 17( 5), 241-254.
url: http://linkinghub.elsevier.com/retrieve/pii/S136466131300065X
15 Brown S., Martinez M. J., & Parsons L. M . ( 2006). The neural basis of human dance. Cerebral Cortex, 16( 8), 1157-1167.
pmid: 16221923 url: http://academic.oup.com/cercor/article/16/8/1157/455551/The-Neural-Basis-of-Human-Dance
16 Burzynska A. Z., Finc K., Taylor B. K., Knecht A. M., & Kramer A. F . ( 2017). The dancing brain: Structural and functional signatures of expert dance training. Frontiers in Human Neuroscience, 11, 566.
pmid: 5711858 url: http://journal.frontiersin.org/article/10.3389/fnhum.2017.00566/full
17 Calvo-Merino B., Glaser D. E., Grèzes J., Passingham R. E., & Haggard P . ( 2005). Action observation and acquired motor skills: An FMRI study with expert dancers. Cerebral Cortex, 15( 8), 1243-1249.
pmid: 15616133 url: http://academic.oup.com/cercor/article/15/8/1243/304707/Action-Observation-and-Acquired-Motor-Skills-An
18 Cross E. S., Hamilton A. F., & Grafton S. T . ( 2006). Building a motor simulation de novo: Observation of dance by dancers. NeuroImage, 31( 3), 1257-1267.
url: http://linkinghub.elsevier.com/retrieve/pii/S1053811906000693
19 Draganski B., Gaser C., Busch V., Schuierer G., Bogdahn U., & May A . ( 2004). Neuroplasticity: Changes in grey matter induced by training. Nature, 427( 6972), 311-312.
url: http://www.nature.com/articles/427311a
20 Giacosa C., Karpati F. J., Foster N. E. V., Penhune V. B., & Hyde K. L . ( 2016). Dance and music training have different effects on white matter diffusivity in sensorimotor pathways. NeuroImage, 135, 273-286.
pmid: 27114054 url: http://linkinghub.elsevier.com/retrieve/pii/S105381191630088X
21 Groussard M., Rauchs G., Landeau B., Viader F., Desgranges B., Eustache F., & Platel H . ( 2010). The neural substrates of musical memory revealed by fMRI and two semantic tasks. NeuroImage, 53( 4), 1301-1309.
pmid: 20627131 url: http://linkinghub.elsevier.com/retrieve/pii/S105381191000964X
22 Groussard M., Viader F., Landeau B., Desgranges B., Eustache F., & Platel H . ( 2014). The effects of musical practice on structural plasticity: The dynamics of grey matter changes. Brain and Cognition, 90, 174-180.
pmid: 25127369 url: http://linkinghub.elsevier.com/retrieve/pii/S0278262614001109
23 Han Y., Yang H., Lv Y. T., Zhu C. Z., He Y., Tang H. H., .. Dong Q . ( 2009). Gray matter density and white matter integrity in pianists' brain: A combined structural and diffusion tensor MRI study. Neuroscience Letters, 459( 1), 3-6.
pmid: 18672026 url: http://linkinghub.elsevier.com/retrieve/pii/S0304394008010380
24 Hänggi J., Koeneke S., Bezzola L., & Jäncke L . ( 2010). Structural neuroplasticity in the sensorimotor network of professional female ballet dancers. Human Brain Mapping, 31( 8), 1196-1206.
pmid: 20024944 url: http://europepmc.org/abstract/med/20024944
25 Huang H. Y., Wang J. J., Seger C., Min L., Feng D., Wu X. Y., .. Huang R. W . ( 2017). Long-term intensive gymnastic training induced changes in intra- and inter-network functional connectivity: An independent component analysis. Brain Structure and Function, 223( 1), 131-144.
pmid: 28733834 url: http://europepmc.org/abstract/MED/28733834
26 Huang R. W., Lu M., Song Z., & Wang J . ( 2015). Long-term intensive training induced brain structural changes in world class gymnasts. Brain Structure and Function, 220( 2), 625-644.
pmid: 24297657 url: http://link.springer.com/10.1007/s00429-013-0677-5
27 Hutchinson S., Lee L. H. L., Gaab N., & Schlaug G . ( 2003). Cerebellar volume of musicians. Cerebral Cortex, 13( 9), 943-949.
url: https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/13.9.943
28 Hyde K. L., Peretz I., & Zatorre R. J . ( 2008). Evidence for the role of the right auditory cortex in fine pitch resolution. Neuropsychologia, 46( 2), 632-639.
pmid: 17959204 url: http://linkinghub.elsevier.com/retrieve/pii/S0028393207003235
29 Jola C., McAleer P., Grosbras M. H., Love S. A., Morison G., & Pollick F. E . ( 2013). Uni- and multisensory brain areas are synchronised across spectators when watching unedited dance recordings. i-Perception, 4( 4), 265-284.
pmid: 24349687 url: http://journals.sagepub.com/doi/full/10.1068/i0536
30 Jones J., Adlam A., Benattayallah A., & Milton F . ( 2017, July). Working memory training increases recruitment of the middle frontal gyrus in children. Poster session presented at the Conference of Experimental Psychology Society, Reading, UK.
31 Karpati F. J., Giacosa C., Foster N. E. V., Penhune V. B., & Hyde K. L . ( 2017). Dance and music share gray matter structural correlates. Brain Research, 1657, 62-73.
pmid: 27923638 url: https://linkinghub.elsevier.com/retrieve/pii/S0006899316308046
32 Kheradmand, A., & Zee D. S, . ( 2011). Cerebellum and ocular motor control. Frontiers in Neurology, 2, 53.
pmid: 3164106 url: http://www.ncbi.nlm.nih.gov/pubmed/21909334
33 Koelsch, S., & Siebel W. A, . ( 2005). Towards a neural basis of music perception. Trends in Cognitive Sciences, 9( 12), 578-584.
url: http://linkinghub.elsevier.com/retrieve/pii/S1364661305002901
34 Lahav A., Saltzman E., & Schlaug G . ( 2007). Action representation of sound: Audiomotor recognition network while listening to newly acquired actions. Journal of Neuroscience, 27( 2), 308-314.
url: http://www.jneurosci.org/cgi/doi/10.1523/JNEUROSCI.4822-06.2007
35 Laufer I., Negishi M., Lacadie C. M., Papademetris X., & Constable R. T . ( 2011). Dissociation between the activity of the right middle frontal gyrus and the middle temporal gyrus in processing semantic priming. PLoS One, 6( 8), e22368.
pmid: 21829619 url: http://dx.plos.org/10.1371/journal.pone.0022368
36 Li G. J., He H., Huang M. T., Zhang X. X., Lu J., Lai Y. X., .. Yao D. Z . ( 2015). Identifying enhanced cortico- basal ganglia loops associated with prolonged dance training. Scientific Reports, 5, 10271.
pmid: 26035693 url: http://www.nature.com/articles/srep10271
37 Li S. Y., Han Y., Wang D. Y., Yang H., Fan Y. B., Lv Y. T., .. He Y . ( 2010). Mapping surface variability of the central sulcus in musicians. Cerebral Cortex, 20( 1), 25-33.
pmid: 19433652 url: https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhp074
38 Maguire E. A., Gadian D. G., Johnsrude I. S., Good C. D., Ashburner J., Frackowiak R. S. J., & Frith C. D . ( 2000) Navigation-related structural change in the hippocampi of taxi drivers. Proceedings of the National Academy of Sciences of the United States of America, 97( 8), 4398-4403.
pmid: 10716738 url: http://europepmc.org/articles/PMC18253/
39 Mutschler I., Schulze-Bonhage A., Glauche V., Demandt E., Speck O., & Ball T . ( 2007). A rapid sound-action association effect in human insular cortex. PLoS One, 2( 2), e259.
pmid: 17327919 url: http://dx.plos.org/10.1371/journal.pone.0000259
40 Nichols, T. E . ( 2012). Multiple testing corrections, nonparametric methods, and random field theory. NeuroImage, 62( 2), 811-815.
pmid: 22521256 url: http://linkinghub.elsevier.com/retrieve/pii/S1053811912003953
41 Oldfield, R. C . ( 1971). The assessment and analysis of handedness: The Edinburgh inventory. Neuropsychologia, 9( 1), 97-113.
pmid: 5146491 url: http://linkinghub.elsevier.com/retrieve/pii/0028393271900674
42 Ono Y., Nomoto Y., Tanaka S., Sato K., Shimada S., Tachibana A., .. Noah J. A . ( 2014). Frontotemporal oxyhemoglobin dynamics predict performance accuracy of dance simulation gameplay: Temporal characteristics of top-down and bottom-up cortical activities. NeuroImage, 85, 461-470.
pmid: 23707582 url: http://linkinghub.elsevier.com/retrieve/pii/S1053811913005715
43 Öztürk A. H., Tasçioglu B., Aktekin M., Kurtoglu Z., & Erden I . ( 2002). Morphometric comparison of the human corpus callosum in professional musicians and non- musicians by using in vivo magnetic resonance imaging. Journal of Neuroradiology, 29( 1), 29-34.
pmid: 11984475 url: http://www.ncbi.nlm.nih.gov/pubmed/11984475
44 Rüber T., Lindenberg R., & Schlaug G . ( 2015). Differential adaptation of descending motor tracts in musicians. Cerebral Cortex, 25( 6), 1490-1498.
pmid: 24363265 url: https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bht331
45 Schlaug G., Jancke L., Huang Y., & Steinmetz H . ( 1995). In vivo evidence of structural brain asymmetry in musicians. Science, 267( 5198), 699-701.
url: http://www.sciencemag.org/cgi/doi/10.1126/science.7839149
46 Schneider P., Scherg M., Dosch H. G., Specht H. J., Gutschalk A., & Rupp A . ( 2002). Morphology of Heschl's gyrus reflects enhanced activation in the auditory cortex of musicians. Nature Neuroscience, 5( 7), 688-694.
pmid: 12068300 url: http://www.nature.com/articles/nn871
47 Shibasaki H., Sadato N., Lyshkow H., Yonekura Y., Honda M., Nagamine T., .. Konishi J . ( 1993). Both primary motor cortex and supplementary motor area play an important role in complex finger movement. Brain, 116, 1387-1398.
pmid: 8293277 url: https://academic.oup.com/brain/article-lookup/doi/10.1093/brain/116.6.1387
48 Sluming V., Barrick T., Howard M., Cezayirli E., Mayes A., & Roberts N . ( 2002). Voxel-based morphometry reveals increased gray matter density in Broca's area in male symphony orchestra musicians. NeuroImage, 17( 3), 1613-1622.
pmid: 12414299 url: http://linkinghub.elsevier.com/retrieve/pii/S1053811902912887
49 Taubert M., Draganski B., Anwander A., Muller K., Horstmann A., Villringer A., & Ragert P . ( 2010). Dynamic properties of human brain structure: Learning-related changes in cortical areas and associated fiber connections. Journal of Neuroscience, 30( 35), 11670-11677.
pmid: 20810887 url: http://www.jneurosci.org/cgi/doi/10.1523/JNEUROSCI.2567-10.2010
50 Turner R. S., Grafton S. T., Votaw J. R., Delong M. R., & Hoffman J. M . ( 1998). Motor subcircuits mediating the control of movement velocity: A PET study. Journal of Neurophysiology, 80( 4), 2162-2176.
pmid: 9772269 url: http://www.physiology.org/doi/10.1152/jn.1998.80.4.2162
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
Copyright © Advances in Psychological Science
Support by Beijing Magtech