心理科学进展 ›› 2021, Vol. 29 ›› Issue (1): 123-130.doi: 10.3724/SP.J.1042.2021.00123
收稿日期:
2020-06-16
出版日期:
2021-01-15
发布日期:
2020-11-23
通讯作者:
周临舒
E-mail:zhoulinshu@163.com
ZHOU Can, ZHOU Linshu(), JIANG Cunmei
Received:
2020-06-16
Online:
2021-01-15
Published:
2020-11-23
Contact:
ZHOU Linshu
E-mail:zhoulinshu@163.com
摘要:
愉悦情绪体验是音乐活动中最普遍的心理现象。通过系统回顾相关的神经科学研究, 认为音乐愉悦体验与大脑奖赏系统的活动有关, 并涉及伏隔核与听觉皮层等其他脑区的交互。在这个过程中, 多巴胺的传递与音乐愉悦体验存在因果联系。基于预期视角, 奖赏预测误差理论和音乐信息理论模型可以解释音乐愉悦体验的产生机制。未来研究应进一步检验伏隔核及各皮层在音乐愉悦体验中的功能, 并整合不同的预期理论。
中图分类号:
周璨, 周临舒, 蒋存梅. (2021). 音乐愉悦体验的神经机制. 心理科学进展 , 29(1), 123-130.
ZHOU Can, ZHOU Linshu, JIANG Cunmei. (2021). Neural mechanisms underlying the experience of musical pleasure. Advances in Psychological Science, 29(1), 123-130.
[1] |
Belfi, A. M., Evans, E., Heskje, J., Bruss, J., & Tranel, D. (2017). Musical anhedonia after focal brain damage. Neuropsychologia, 97, 29-37.
doi: 10.1016/j.neuropsychologia.2017.01.030 URL pmid: 28159618 |
[2] |
Belfi, A. M., & Loui, P. (2020). Musical anhedonia and rewards of music listening: Current advances and a proposed model. Annals of the New York Academy of Sciences, 1464(1), 99-114.
doi: 10.1111/nyas.14241 URL pmid: 31549425 |
[3] |
Berridge, K. C., & Kringelbach, M. L. (2008). Affective neuroscience of pleasure: Reward in humans and animals. Psychopharmacology, 199(3), 457-480.
doi: 10.1007/s00213-008-1099-6 URL pmid: 18311558 |
[4] |
Berridge, K. C., & Kringelbach, M. L. (2015). Pleasure systems in the brain. Neuron, 86(3), 646-664.
doi: 10.1016/j.neuron.2015.02.018 URL pmid: 25950633 |
[5] |
Blood, A. J., & Zatorre, R. J. (2001). Intensely pleasurable responses to music correlate with activity in brain regions implicated in reward and emotion. Proceedings of the National Academy of Sciences of the United States of America, 98(20), 11818-11823.
doi: 10.1073/pnas.191355898 URL pmid: 11573015 |
[6] |
Brodal, H. P., Osnes, B., & Specht, K. (2017). Listening to rhythmic music reduces connectivity within the basal ganglia and the reward system. Frontiers in Neuroscience, 11, 153.
doi: 10.3389/fnins.2017.00153 URL pmid: 28400717 |
[7] |
Cheung, V. K., Harrison, P. M., Meyer, L., Pearce, M. T., Haynes, J.-D., & Koelsch, S. (2019). Uncertainty and surprise jointly predict musical pleasure and amygdala, hippocampus, and auditory cortex activity. Current Biology, 29(23), 4084-4092.
doi: 10.1016/j.cub.2019.09.067 URL pmid: 31708393 |
[8] |
Clark, C. N., Golden, H. L., McCallion, O., Nicholas, J. M., Cohen, M. H., Slattery, C. F., ... Crutch, S. J. (2018). Music models aberrant rule decoding and reward valuation in dementia. Social Cognitive and Affective Neuroscience, 13(2), 192-202.
doi: 10.1093/scan/nsx140 URL pmid: 29186630 |
[9] |
Conard, N. J., Malina, M., & Münzel, S. C. (2009). New flutes document the earliest musical tradition in southwestern Germany. Nature, 460(7256), 737-740.
doi: 10.1038/nature08169 URL pmid: 19553935 |
[10] |
de Fleurian, R., Harrison, P. M., Pearce, M. T., & Quiroga- Martinez, D. R. (2019). Reward prediction tells us less than expected about musical pleasure. Proceedings of the National Academy of Sciences of the United States of America, 116(42), 20813-20814.
doi: 10.1073/pnas.1913244116 URL pmid: 31537748 |
[11] |
Dubé, L., & Le Bel, J. (2003). The content and structure of laypeople's concept of pleasure. Cognition and Emotion, 17(2), 263-295.
doi: 10.1080/02699930302295 URL pmid: 29715723 |
[12] |
Egerton, A., Mehta, M. A., Montgomery, A. J., Lappin, J. M., Howes, O. D., Reeves, S. J., ... Grasby, P. M. (2009). The dopaminergic basis of human behaviors: A review of molecular imaging studies. Neuroscience & Biobehavioral Reviews, 33(7), 1109-1132.
doi: 10.1016/j.neubiorev.2009.05.005 URL pmid: 19481108 |
[13] |
Ferreri, L., Mas-Herrero, E., Zatorre, R. J., Ripollés, P., Gomez-Andres, A., Alicart, H., ... Rodriguez-Fornells, A. (2019). Dopamine modulates the reward experiences elicited by music. Proceedings of the National Academy of Sciences of the United States of America, 116(9), 3793-3798.
doi: 10.1073/pnas.1811878116 URL pmid: 30670642 |
[14] |
Fletcher, P. D., Downey, L., Witoonpanich, P., & Warren, J. (2013). The brain basis of musicophilia: Evidence from frontotemporal lobar degeneration. Frontiers in Psychology, 4, 347.
doi: 10.3389/fpsyg.2013.00347 URL pmid: 23801975 |
[15] |
Freeman, T. P., Pope, R. A., Wall, M. B., Bisby, J. A., Luijten, M., Hindocha, C., ... Curran, H. V. (2018). Cannabis dampens the effects of music in brain regions sensitive to reward and emotion. International Journal of Neuropsychopharmacology, 21(1), 21-32.
doi: 10.1093/ijnp/pyx082 URL |
[16] |
Gold, B. P., Mas-Herrero, E., Zeighami, Y., Benovoy, M., Dagher, A., & Zatorre, R. J. (2019). Musical reward prediction errors engage the nucleus accumbens and motivate learning. Proceedings of the National Academy of Sciences of the United States of America, 116(8), 3310-3315.
doi: 10.1073/pnas.1809855116 URL pmid: 30728301 |
[17] |
Gold, B. P., Pearce, M. T., Mas-Herrero, E., Dagher, A., & Zatorre, R. J. (2019). Predictability and uncertainty in the pleasure of music: A reward for learning? Journal of Neuroscience, 39(47), 9397-9409.
doi: 10.1523/JNEUROSCI.0428-19.2019 URL pmid: 31636112 |
[18] |
Griffiths, T. D., Warren, J. D., Dean, J. L., & Howard, D. (2004). “When the feeling’s gone”: A selective loss of musical emotion. Journal of Neurology, Neurosurgery & Psychiatry, 75(2), 344-345.
doi: 10.1007/s00415-020-10157-2 URL pmid: 32813052 |
[19] |
Hansen, N. C., Dietz, M. J., & Vuust, P. (2017). Commentary: Predictions and the brain: How musical sounds become rewarding. Frontiers in Human Neuroscience, 11, 168.
doi: 10.3389/fnhum.2017.00168 URL pmid: 28424603 |
[20] |
Hansen, N. C., & Pearce, M. T. (2014). Predictive uncertainty in auditory sequence processing. Frontiers in Psychology, 5, 1052.
doi: 10.3389/fpsyg.2014.01052 URL pmid: 25295018 |
[21] |
Heydari, S., & Holroyd, C. B. (2016). Reward positivity: Reward prediction error or salience prediction error? Psychophysiology, 53(8), 1185-1192.
doi: 10.1111/psyp.12673 URL pmid: 27184070 |
[22] |
Huron, D. (2001). Is music an evolutionary adaptation? Annals of the New York Academy of Sciences, 930(1), 43-61.
doi: 10.1111/j.1749-6632.2001.tb05724.x URL |
[23] |
Jacome, D. E. (1984). Aphasia with elation, hypermusia, musicophilia and compulsive whistling. Journal of Neurology, Neurosurgery & Psychiatry, 47(3), 308-310.
doi: 10.1136/jnnp.47.3.308 URL pmid: 6707680 |
[24] | Juslin, P. N., & Sloboda, J. A. (2013). Music and Emotion. In D. Deutsch (Ed.), The psychology of music (pp.583-645). San Diego, CA: Academic Press. |
[25] | Koelsch, S. (2012). Brain and music. Oxford, UK: Wiley-Blackwell. |
[26] |
Koelsch, S. (2014). Brain correlates of music-evoked emotions. Nature Reviews Neuroscience, 15(3), 170-180.
doi: 10.1038/nrn3666 URL |
[27] |
Koelsch, S., Fritz, T., Schulze, K., Alsop, D., & Schlaug, G. (2005). Adults and children processing music: An fMRI study. NeuroImage, 25(4), 1068-1076.
doi: 10.1016/j.neuroimage.2004.12.050 URL pmid: 15850725 |
[28] |
Koelsch, S., Fritz, T., v. Cramon, D. Y., Müller, K., & Friederici, A. D. (2006). Investigating emotion with music: An fMRI study. Human Brain Mapping, 27(3), 239-250.
doi: 10.1002/hbm.20180 URL pmid: 16078183 |
[29] | Koelsch, S., Vuust, P., & Friston, K. (2019). Predictive processes and the peculiar case of music. Trends in Cognitive Sciences, 23(1), 63-77. |
[30] |
Lehne, M., Rohrmeier, M., & Koelsch, S. (2013). Tension- related activity in the orbitofrontal cortex and amygdala: An fMRI study with music. Social Cognitive and Affective Neuroscience, 9(10), 1515-1523.
doi: 10.1093/scan/nst141 URL pmid: 23974947 |
[31] |
Mallik, A., Chanda, M. L., & Levitin, D. J. (2017). Anhedonia to music and mu-opioids: Evidence from the administration of naltrexone. Scientific Reports, 7, 41952.
doi: 10.1038/srep41952 URL pmid: 28176798 |
[32] |
Martínez-Molina, N., Mas-Herrero, E., Rodríguez-Fornells, A., Zatorre, R. J., & Marco-Pallarés, J. (2016). Neural correlates of specific musical anhedonia. Proceedings of the National Academy of Sciences of the United States of America, 113(46), E7337-E7345.
doi: 10.1073/pnas.1611211113 URL pmid: 27799544 |
[33] |
Martínez-Molina, N., Mas-Herrero, E., Rodríguez-Fornells, A., Zatorre, R. J., & Marco-Pallarés, J. (2019). White matter microstructure reflects individual differences in music reward sensitivity. Journal of Neuroscience, 39(25), 5018-5027.
doi: 10.1523/JNEUROSCI.2020-18.2019 URL pmid: 31000588 |
[34] |
Mas-Herrero, E., Dagher, A., & Zatorre, R. J. (2018). Modulating musical reward sensitivity up and down with transcranial magnetic stimulation. Nature Human Behaviour, 2(1), 27-32.
doi: 10.1038/s41562-017-0241-z URL pmid: 30980048 |
[35] |
Mas-Herrero, E., Karhulahti, M., Marco-Pallares, J., Zatorre, R. J., & Rodriguez-Fornells, A. (2018). The impact of visual art and emotional sounds in specific musical anhedonia. Progress in Brain Research, 237, 399-413.
doi: 10.1016/bs.pbr.2018.03.017 URL pmid: 29779745 |
[36] | Mas-Herrero, E., Marco-Pallares, J., Lorenzo-Seva, U., Zatorre, R. J., & Rodriguez-Fornells, A. (2013). Individual differences in music reward experiences. Music Perception: An Interdisciplinary Journal, 31(2), 118-138. |
[37] |
Mas-Herrero, E., Zatorre, R. J., Rodriguez-Fornells, A., & Marco-Pallarés, J. (2014). Dissociation between musical and monetary reward responses in specific musical anhedonia. Current Biology, 24(6), 699-704.
doi: 10.1016/j.cub.2014.01.068 URL |
[38] |
Mazzoni, M., Moretti, P., Pardossi, L., Vista, M., Muratorio, A., & Puglioli, M. (1993). A case of music imperception. Journal of Neurology, Neurosurgery, and Psychiatry, 56(3), 322.
doi: 10.1136/jnnp.56.3.322 URL pmid: 8459254 |
[39] |
Menon, V., & Levitin, D. J. (2005). The rewards of music listening: Response and physiological connectivity of the mesolimbic system. NeuroImage, 28(1), 175-184.
doi: 10.1016/j.neuroimage.2005.05.053 URL pmid: 16023376 |
[40] | Meyer, L. B. (1956). Emotion and meaning in music. London: University of Chicago Press. |
[41] |
Mitterschiffthaler, M. T., Fu, C. H., Dalton, J. A., Andrew, C. M., & Williams, S. C. (2007). A functional MRI study of happy and sad affective states induced by classical music. Human Brain Mapping, 28(11), 1150-1162.
doi: 10.1002/hbm.20337 URL pmid: 17290372 |
[42] |
Pearce, M. T. (2018). Statistical learning and probabilistic prediction in music cognition: Mechanisms of stylistic enculturation. Annals of the New York Academy of Sciences, 1423(1), 378-395.
doi: 10.1111/nyas.2018.1423.issue-1 URL |
[43] |
Rohrer, J. D., Smith, S. J., & Warren, J. D. (2006). Craving for music after treatment for partial epilepsy. Epilepsia, 47(5), 939-940.
doi: 10.1111/j.1528-1167.2006.00565.x URL pmid: 16686661 |
[44] |
Royal, I., Vuvan, D. T., Zendel, B. R., Robitaille, N., Schönwiesner, M., & Peretz, I. (2016). Activation in the right inferior parietal lobule reflects the representation of musical structure beyond simple pitch discrimination. PLoS One, 11( 5).
doi: 10.1371/journal.pone.0169091 URL pmid: 28036384 |
[45] | Sacks, O. (2007). Musicophilia: Tales of music and the brain. London: Picador. |
[46] |
Salimpoor, V. N., Benovoy, M., Larcher, K., Dagher, A., & Zatorre, R. J. (2011). Anatomically distinct dopamine release during anticipation and experience of peak emotion to music. Nature Neuroscience, 14(2), 257-262.
doi: 10.1038/nn.2726 URL pmid: 21217764 |
[47] |
Salimpoor, V. N., Benovoy, M., Longo, G., Cooperstock, J. R., & Zatorre, R. J. (2009). The rewarding aspects of music listening are related to degree of emotional arousal. PloS ONE, 4(10):e7487.
doi: 10.1371/journal.pone.0007487 URL pmid: 19834599 |
[48] |
Salimpoor, V. N., van den. Bosch, I., Kovacevic, N., Mcintosh, A. R., Dagher, A., & Zatorre, R. J. (2013). Interactions between the nucleus accumbens and auditory cortices predict music reward value. Science, 340(6129), 216-219.
doi: 10.1126/science.1231059 URL |
[49] |
Salimpoor, V. N., Zald, D. H., Zatorre, R. J., Dagher, A., & McIntosh, A. R. (2015). Predictions and the brain: How musical sounds become rewarding. Trends in Cognitive Sciences, 19(2), 86-91.
doi: 10.1016/j.tics.2014.12.001 URL pmid: 25534332 |
[50] |
Satoh, M., Kato, N., Tabei, K.-I., Nakano, C., Abe, M., Fujita, R., ... Kondo, K. (2016). A case of musical anhedonia due to right putaminal hemorrhage: A disconnection syndrome between the auditory cortex and insula. Neurocase, 22(6), 518-525.
doi: 10.1080/13554794.2016.1264609 URL pmid: 27925501 |
[51] |
Satoh, M., Nakase, T., Nagata, K., & Tomimoto, H. (2011). Musical anhedonia: Selective loss of emotional experience in listening to music. Neurocase, 17(5), 410-417.
doi: 10.1080/13554794.2010.532139 URL pmid: 21714738 |
[52] |
Schubert, E. (2013). Emotion felt by the listener and expressed by the music: Literature review and theoretical perspectives. Frontiers in Psychology, 4, 1-18.
doi: 10.3389/fpsyg.2013.00001 URL pmid: 23382719 |
[53] |
Schultz, W. (2015). Neuronal reward and decision signals: From theories to data. Physiological Reviews, 95(3), 853-951.
doi: 10.1152/physrev.00023.2014 URL pmid: 26109341 |
[54] |
Schultz, W. (2016). Dopamine reward prediction error coding. Dialogues in Clinical Neuroscience, 18(1), 23-32.
URL pmid: 27069377 |
[55] |
Schultz, W. (2017). Reward prediction error. Current Biology, 27(10), R369-R371.
doi: 10.1016/j.cub.2017.02.064 URL pmid: 28535383 |
[56] |
Sescousse, G., Caldú, X., Segura, B., & Dreher, J. C. (2013). Processing of primary and secondary rewards: A quantitative meta-analysis and review of human functional neuroimaging studies. Neuroscience & Biobehavioral Reviews, 37(4), 681-696.
doi: 10.1016/j.neubiorev.2013.02.002 URL pmid: 23415703 |
[57] |
Watabe-Uchida, M., Eshel, N., & Uchida, N. (2017). Neural circuitry of reward prediction error. Annual Review of Neuroscience, 40(1), 373-394.
doi: 10.1146/annurev-neuro-072116-031109 URL |
[58] |
Zatorre, R. J. (2015). Musical pleasure and reward: Mechanisms and dysfunction. Annals of the New York Academy of Sciences, 1337(1), 202-211.
doi: 10.1111/nyas.12677 URL |
[59] | Zatorre, R. J., & Salimpoor, V. N. (2013). From perception to pleasure: Music and its neural substrates. Proceedings of the National Academy of Sciences of the United States of America, 110(Suppl. 2), 10430-10437. |
[1] | 秦浩方, 黄蓉, 贾世伟. 反馈相关负波:一种抑郁症的生物标记物[J]. 心理科学进展, 2021, 29(3): 404-413. |
[2] | 陈乐乐, 黄蓉, 贾世伟. 反馈相关负波与成瘾[J]. 心理科学进展, 2020, 28(6): 959-968. |
[3] | 易伟, 梅淑婷, 郑亚. 努力:成本还是奖赏?[J]. 心理科学进展, 2019, 27(8): 1439-1450. |
[4] | 陈煦海, 吴茜. 自主选择偏好:表现、机制与应用[J]. 心理科学进展, 2019, 27(8): 1460-1467. |
[5] | 孙庆洲, 邬青渊, 张静, 江程铭, 赵雷, 胡凤培. 风险决策的概率权重偏差:心理机制与优化策略[J]. 心理科学进展, 2019, 27(5): 905-913. |
[6] | 刘浩然, 张晨风, 杨莉. 心理韧性及其神经机制:来自非人类动物模型的证据[J]. 心理科学进展, 2019, 27(2): 312-321. |
[7] | 杨玲, 姚东伟, 曹华, 王斌强, 何圆圆, 苏红婷. 药物成瘾者决策缺陷的特征、机制及干预[J]. 心理科学进展, 2019, 27(2): 329-343. |
[8] | 谢晓非, 邓州, 李慕轼, 朱敏帆. 奏响长者的“生命质量”凯歌[J]. 心理科学进展, 2019, 27(11): 1793-1801. |
[9] | 刘晓婷, 张丽锦, 张宁. 睡眠质量对冒险行为影响的证据及解析[J]. 心理科学进展, 2019, 27(11): 1875-1886. |
[10] | 吴静, 崔睿思, 孙翠翠, 李新旺. 奖赏环路与阿片成瘾:喙内侧被盖核的调节作用[J]. 心理科学进展, 2019, 27(1): 60-69. |
[11] | 李丹阳, 李鹏, 李红. 反馈负波及其近10年理论解释[J]. 心理科学进展, 2018, 26(9): 1642-1650. |
[12] | 张一帆, 齐星亮, 蔡厚德. 啮齿动物主动母性行为动态改变的神经机制[J]. 心理科学进展, 2018, 26(8): 1417-1428. |
[13] | 张燕, 曹慧敏, 郑元杰, 任衍具. 自上而下的目标调节奖赏联结干扰项的注意定向和脱离[J]. 心理科学进展, 2017, 25(suppl.): 52-52. |
[14] | 李 琪, 许晶, 郑亚. 刺激前负波:奖赏期待的电生理指标[J]. 心理科学进展, 2017, 25(7): 1114-1121. |
[15] | 韩艳;舍英;高笑. 肥胖成因的解释——基于食物奖赏研究的视角[J]. 心理科学进展, 2017, 25(3): 452-462. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||