[1] | Asaoka, R., & Gyoba, J. (2016). Sounds modulate the perceived duration of visual stimuli via crossmodal integration. Multisensory Research, 29(4-5), 319-335. | [2] | Azabou, E., Rohaut, B., Porcher, R., Heming, N., Kandelman, S., Allary, J., … the GENeR. (2018). Mismatch negativity to predict subsequent awakening in deeply sedated critically ill patients. British Journal of Anaesthesia, 121(6), 1290-1297. | [3] | Bernardinis, M., Atashzar, S. F., Jog, M. S., & Patel, R. V. (2019). Differential temporal perception abilities in Parkinson's disease patients based on timing magnitude. Scientific Reports, 9(1), 19638. | [4] | Blankenship, P. A., Cheatwood, J. L., & Wallace, D. G. (2017). Unilateral lesions of the dorsocentral striatum (DCS) disrupt spatial and temporal characteristics of food protection behavior. Brain Structure and Function, 222(6), 2697-2710. | [5] | Blomeley, F. J., Lowe, C. F., & Wearden, J. H. (2004). Reinforcer concentration effects on a fixed-interval schedule. Behavioural Processes, 67(1), 55-66. | [6] | Body, S., Cheung, T. H. C., Bezzina, G., Asgari, K., Fone, K. C. F., Glennon, J. C., … Szabadi, E. (2006). Effects of d-amphetamine and DOI (2, 5-dimethoxy-4-iodoamphetamine) on timing behavior: Interaction between D1 and 5-HT2A receptors. Psychopharmacology, 189(3), 331-343. | [7] | Body, S., Chiang, T. J., Mobini, S., Ho, M. Y., Bradshaw, C. M., & Szabadi, E. (2002). Effect of 8-OH-DPAT on temporal discrimination following central 5-hydroxytryptamine depletion. Pharmacology Biochemistry and Behavior, 71(4), 787-793. | [8] | Body, S., Kheramin, S., Mobini, S., Ho, M. Y., Velazquez-Martinez, D. N., Bradshaw, C. M., & Szabadi, E. (2002). Antagonism by WAY-100635 of the effects of 8-OH-DPAT on performance on a free-operant timing schedule in intact and 5-HT-depleted rats. Behavioural Pharmacology, 13(8), 603-614. | [9] | Buhusi, C. V., & Meck, W. H. (2005). What makes us tick? Functional and neural mechanisms of interval timing. Nature Reviews Neuroscience, 6(10), 755-765. | [10] | Buhusi, C. V., & Meck, W. H. (2006). Time sharing in rats: A peak-interval procedure with gaps and distracters. Behavioural Processes, 71(2-3), 107-115. | [11] | Buhusi, C. V., & Meck, W. H. (2009). Relativity theory and time perception: Single or multiple clocks? Plos One, 4(7), e6268. | [12] | Buonomano, D. V. (2000). Decoding temporal information: A model based on short-term synaptic plasticity. Journal of Neuroscience, 20(3), 1129-1141. | [13] | Cheng, R. K., MacDonald, C. J., & Meck, W. H. (2006). Differential effects of cocaine and ketamine on time estimation: Implications for neurobiological models of interval timing. Pharmacology Biochemistry and Behavior, 85(1), 114-122. | [14] | Cheng, R. K., Scott, A. C., Penney, T. B., Williams, C. L., & Meck, W. H. (2008). Prenatal-choline supplementation differentially modulates timing of auditory and visual stimuli in aged rats. Brain Research, 1237, 167-175. | [15] | Church, R. M., & Deluty, M. Z. (1977). Bisection of temporal intervals. Journal of Experimental Psychology-Animal Behavior Processes, 3(3), 216-228. | [16] | Church, R. M., Meck, W. H., & Gibbon, J. (1994). Application of scalar timing theory to individual trials. Journal of Experimental Psychology-Animal Behavior Processes, 20(2), 135-155. | [17] | Coull, J. T., Cheng, R. K., & Meck, W. H. (2011). Neuroanatomical and neurochemical substrates of timing. Neuropsychopharmacology, 36(1), 3-25. | [18] | Daniels, C. W., Watterson, E., Garcia, R., Mazur, G. J., Brackney, R. J., & Sanabria, F. (2015). Revisiting the effect of nicotine on interval timing. Behavioural Brain Research, 283, 238-250. | [19] | Deane, A. R., Millar, J., Bilkey, D. K., & Ward, R. D. (2017). Maternal immune activation in rats produces temporal perception impairments in adult offspring analogous to those observed in schizophrenia. Plos One, 12(11), e0187719. | [20] | de Corte, B. J., Wagner, L. M., Matell, M. S., & Narayanan, N. S. (2019). Striatal dopamine and the temporal control of behavior. Behavioural Brain Research, 356, 375-379. | [21] | Dews, P. B. (1978). Studies on responding under fixed-interval schedules of reinforcement: II. The scalloped pattern of the cumulative record. Journal of the Experimental Analysis of Behavior, 29(1), 67-75. | [22] | Doenyas, C., Mutluer, T., Genc, E., & Balc?, F. (2019). Error monitoring in decision-making and timing is disrupted in autism spectrum disorder. Autism Research, 12(2), 239-248. | [23] | Droit-Volet, S. (2013). Time perception, emotions and mood disorders. Journal of Physiology-Paris, 107(4), 255-264. | [24] | Eckard, M. L., & Kyonka, E. G. E. (2018). Differential reinforcement of low rates differentially decreased timing precision. Behavioural Processes, 151, 111-118. | [25] | Eichenbaum, H. (2014). Time cells in the hippocampus: A new dimension for mapping memories. Nature Reviews Neuroscience, 15(11), 732-744. | [26] | Faure, A., Es-Seddiqi, M., Brown, B. L., Nguyen, H. P., Riess, O., von Horsten, S., … Doyère, V. (2013). Modified impact of emotion on temporal discrimination in a transgenic rat model of Huntington disease. Frontiers in Behavioral Neuroscience, 7, 130. | [27] | Garces, D., El Massioui, N., Lamirault, C., Riess, O., Nguyen, H. P., Brown, B. L., & Doyère, V. (2018). The alteration of emotion regulation precedes the deficits in interval timing in the BACHD rat model for Huntington disease. Frontiers in Integrative Neuroscience, 12, 14. | [28] | Gibbon, J., Church, R. M., & Meck, W. H. (1984). Scalar timing in memory. Annals of the New York Academy Sciences, 423(1), 52-77. | [29] | Graham, S., Ho, M. Y., Bradshaw, C. M., & Szabadi, E. (1994). Facilitated acquisition of a temporal discrimination following destruction of the ascending 5-hydroxytryptaminergic pathways. Psychopharmacology, 116(3), 373-378. | [30] | Grommet, E. K., Hemmes, N. S., & Brown, B. L. (2019). The role of clock and memory processes in the timing of fear cues by humans in the temporal bisection task. Behavioural Processes, 164, 217-229. | [31] | Halberstadt, A. L., Sindhunata, I. S., Scheffers, K., Flynn, A. D., Sharp, R. F., Geyer, M. A., & Young, J. W. (2016). Effect of 5-HT2A and 5-HT2C receptors on temporal discrimination by mice. Neuropharmacology, 107, 364-375. | [32] | Hass, J., & Durstewitz, D. (2016). Time at the center, or time at the side? Assessing current models of time perception. Current Opinion in Behavioral Sciences, 8, 238-244. | [33] | Hata, T. (2011). Glutamate - A forgotten target for interval timing. Frontiers in Integrative Neuroscience, 5, 27. | [34] | Herrnstein, R. J. (1964). Aperiodicity as a factor in choice. Journal of the Experimental Analysis of Behavior, 7(2), 179-182. | [35] | Hilgard, E. R. (1939). The behavior of organisms. Psychological Bulletin, 36(2), 121-125. | [36] | H?hn, S., Dallérac, G., Faure, A., Urbach, Y. K., Nguyen, H. P., Riess, O., … Doyère, V. (2011). Behavioral and in vivo electrophysiological evidence for presymptomatic alteration of prefrontostriatal processing in the transgenic rat model for huntington disease. Journal of Neuroscienc, 31(24), 8986-8997. | [37] | Ito, M. (1981). Control of monkey's spaced responding by sample durations. Japanese Psychological Research, 23(4), 213-218. | [38] | Jaldow, E. J., & Oakley, D. A. (1990). Performance on a differential reinforcement of low-rate schedule in neodecorticated rats and rats with hippocampal lesions. Psychobiology, 18(4), 394-403. | [39] | Jones, C. R., & Jahanshahi, M. (2009). The substantia nigra, the basal ganglia, dopamine and temporal processing. Journal of Neural Transmission Supplementa, (73), 161-171. | [40] | Jurek, L., Longuet, Y., Baltazar, M., Amestoy, A., Schmitt, V., Desmurget, M., & Geoffray, M. M. (2019). How did I get so late so soon? A review of time processing and management in autism. Behavioural Brain Research, 374, 112121. | [41] | Kamada, T., & Hata, T. (2018). Insular cortex inactivation generalizes fear-induced underestimation of interval timing in a temporal bisection task. Behavioural Brain Research, 347, 219-226. | [42] | Kamada, T., & Hata, T. (2019). Basolateral amygdala inactivation eliminates fear-induced underestimation of time in a temporal bisection task. Behavioural Brain Research, 356, 227-235. | [43] | Kim, J., Ghim, J. W., Lee, J. H., & Jung, M. W. (2013). Neural correlates of interval timing in rodent prefrontal cortex. Journal of Neuroscience, 33(34), 13834-13847. | [44] | Kim, J., Jung, A. H., Byun, J., Jo, S., & Jung, M. W. (2009). Inactivation of medial prefrontal cortex impairs time interval discrimination in rats. Frontiers in Behavioral Neuroscience, 3, 38. | [45] | Kim, Y. C., Han, S. W., Alberico, S. L., Ruggiero, R. N., de Corte, B., Chen, K. H., & Narayanan, N. S. (2017). Optogenetic stimulation of frontal D1 neurons compensates for impaired temporal control of action in dopamine-depleted mice. Current Biology, 27(1), 39-47. | [46] | Kim, Y. C., & Narayanan, N. S. (2019). Prefrontal D1 dopamine-receptor neurons and delta resonance in interval timing. Cerebral Cortex, 29(5), 2051-2060. | [47] | Kleinman, M. R., Sohn, H., & Lee, D. (2016). A two-stage model of concurrent interval timing in monkeys. Journal of Neurophysiology, 116(3), 1068-1081. | [48] | Kurti, A. N., & Matell, M. S. (2011). Nucleus accumbens dopamine modulates response rate but not response timing in an interval timing task. Behavioral Neuroscience, 125(2), 215-225. | [49] | Lejeune, H., Ferrara, A., Soffie, M., Bronchart, M., & Wearden, J. H. (1998). Peak procedure performance in young adult and aged rats: Acquisition and adaptation to a changing temporal criterion. Quarterly Journal of Experimental Psychology Section B-Comparative and Physiological Psychology, 51(3), 193-217. | [50] | Lejeune, H., Wearden, J. H. (1991). The comparative psychology of fixed-interval responding: Some quantitative analyses. Learning and Motivation, 22(1-2), 84-111. | [51] | Leon, M. I., & Shadlen, M. N. (2003). Representation of time by neurons in the posterior parietal cortex of the macaque. Neuron, 38(2), 317-327. | [52] | Lipponen, A., Kurkela, J. L. O., Kyl?heiko, I., H?ltt?, S., Ruusuvirta, T., H?m?l?inen, J. A., & Astikainen, P. (2019). Auditory-evoked potentials to changes in sound duration in urethane-anaesthetized mice. European Journal of Neuroscience, 50(2), 1911-1919. | [53] | Liu, X. H., Wang, N., Wang, J. Y., & Luo, F. (2019). Formalin-induced and neuropathic pain altered time estimation in a temporal bisection task in rats. Scientific Reports, 9, 18683. | [54] | Marinho, V., Oliveira, T., Bandeira, J., Pinto, G. R., Gomes, A., Lima, V., … Teixeira, S. (2018). Genetic influence alters the brain synchronism in perception and timing. Journal of Biomedical Science, 25(1), 61. | [55] | Marshall, A. T., Smith, A. P., & Kirkpatrick, K. (2014). Mechanisms of impulsive choice: I. Individual differences in interval timing and reward processing. Journal of the Experimental Analysis of Behavior, 102(1), 86-101. | [56] | Matell, M. S., Kim, J. S., & Hartshorne, L. (2014). Timing in a variable interval procedure: Evidence for a memory singularity. Behavioural Processes, 101, 49-57. | [57] | Matell, M. S., & Meck, W. H. (2004). Cortico-striatal circuits and interval timing: Coincidence detection of oscillatory processes. Cognitive Brain Research, 21(2), 139-170. | [58] | Matell, M. S., Meck, W. H., & Nicolelis, M. A. L. (2003). Interval timing and the encoding of signal duration by ensembles of cortical and striatal neurons. Behavioral Neuroscience, 117(4), 760-773. | [59] | Meck, W. H. (1996). Neuropharmacology of timing and time perception. Cognitive Brain Research, 3(3-4), 227-242. | [60] | Meck, W. H. (2006). Neuroanatomical localization of an internal clock: A functional link between mesolimbic, nigrostriatal, and mesocortical dopaminergic systems. Brain Research, 1109(1), 93-107. | [61] | Meck, W. H., Cheng, R. K., MacDonald, C. J., Gainetdinov, R. R., Caron, M. G., & Cevik, M. ?. (2012). Gene-dose dependent effects of methamphetamine on interval timing in dopamine-transporter knockout mice. Neuropharmacology, 62(3), 1221-1229. | [62] | Meck, W. H., & Church, R. M. (1987). Cholinergic modulation of the content of temporal memory. Behavioral Neuroscience, 101(4), 457-464. | [63] | Meck, W. H., Church, R. M., & Matell, M. S. (2013). Hippocampus, time, and memory-A retrospective analysis. Behavioral Neuroscience, 127(5), 642-654. | [64] | Meck, W. H., Penney, T. B., & Pouthas, V. (2008). Cortico-striatal representation of time in animals and humans. Current Opinion in Neurobiology, 18(2), 145-152. | [65] | Mello, G. B. M., Soares, S., & Paton, J. J. (2015). A scalable population code for time in the striatum. Current Biology, 25(9), 1113-1122. | [66] | Monterosso, J., & Ainslie, G. (1999). Beyond discounting: Possible experimental models of impulse control. Psychopharmacology, 146(4), 339-347. | [67] | N??t?nen, R., Paavilainen, P., Rinne, T., & Alho, K. (2007). The mismatch negativity (MMN) in basic research of central auditory processing: A review. Clinical Neurophysiology, 118(12), 2544-2590. | [68] | Nowak, K., Oron, A., Szymaszek, A., Leminen, M., N??t?nen, R., & Szelag, E. (2016). Electrophysiological indicators of the age-related deterioration in the sensitivity to auditory duration deviance. Frontiers in Aging Neuroscience, 8, 2. | [69] | Oprisan, S. A., Aft, T., Buhusi, M., & Buhusi, C. V. (2018). Scalar timing in memory: A temporal map in the hippocampus. Journal of Theoretical Biology, 438, 133-142. | [70] | Ordu?a, V., García, A., Menez, M., Hong, E., & Bouzas, A. (2008). Performance of spontaneously hypertensive rats in a peak-interval procedure with gaps. Behavioural Brain Research, 191(1), 72-76. | [71] | Parker, K. L., Chen, K. H., Kingyon, J. R., Cavanagh, J. F., & Narayanan, N. S. (2014). D1-dependent 4 Hz oscillations and ramping activity in rodent medial frontal cortex during interval timing. Journal of Neuroscience, 34(50), 16774-16783. | [72] | Parker, K. L., Ruggiero, R. N., & Narayanan, N. S. (2015). Infusion of D1 dopamine receptor agonist into medial frontal cortex disrupts neural correlates of interval timing. Frontiers in Behavioral Neuroscience, 9, 294. | [73] | Rey, A. E., Michael, G. A., Dondas, C., Thar, M., Garcia-Larrea, L., & Mazza, S. (2017). Pain dilates time perception. Scientific Reports, 7(1), 15682. | [74] | Roberts, S. (1981). Isolation of an internal clock. Journal of Experimental Psychology: Animal Behavior Processes, 7(3), 242-268. | [75] | Roger, C., Hasbroucq, T., Rabat, A., Vidal, F., & Burle, B. (2009). Neurophysics of temporal discrimination in the rat: A mismatch negativity study. Psychophysiology, 46(5), 1028-1032. | [76] | Sidman, M. (1956). Time discrimination and behavioral interaction in a free operant situation. Journal of comparative and physiological psychology, 49(5), 469-473. | [77] | Smith, A. P., Marshall, A. T., & Kirkpatrick, K. (2015). Mechanisms of impulsive choice: II. Time-based interventions to improve self-control. Behavioural Processes, 112, 29-42. | [78] | Stubbs, A. (1968). The discrimination of stimulus duration by pigeons. Journal of the Experimental Analysis of Behavior, 11(3), 223-238. | [79] | Stubbs, D. A. (1980). Temporal discrimination and a free-operant psychophysical procedure. Journal of the Experimental Analysis of Behavior, 33(2), 167-185. | [80] | Sukhotina, I. A., Dravolina, O. A., Novitskaya, Y., Zvartau, E. E., Danysz, W., & Bespalov, A. Y. (2008). Effects of mGlu1 receptor blockade on working memory, time estimation, and impulsivity in rats. Psychopharmacology (Berl), 196(2), 211-220. | [81] | Sussman, E. S. (2007). A new view on the MMN and attention debate - The role of context in processing auditory events. Journal of Psychophysiology, 21(3-4), 164-175. | [82] | Swanton, D. N., Matell, M. S. (2011). Stimulus compounding in interval timing: The modality-duration relationship of the anchor durations results in qualitatively different response patterns to the compound cue Journal of Experimental Psychology-Animal Behavioral Processes, 37(1), 94-107. | [83] | Tam, S. K. E., Jennings, D. J., & Bonardi, C. (2013). Dorsal hippocampal involvement in conditioned-response timing and maintenance of temporal information in the absence of the CS. Experimental Brain Research, 227(4), 547-559. | [84] | Th?nes, S., & Oberfeld, D. (2015). Time perception in depression: A meta-analysis. Journal of Affective Disorders, 175, 359-372. | [85] | Toda, K., Lusk, N. A., Watson, G. D. R., Kim, N., Lu, D., Li, H. E., … Yin, H. H. (2017). Nigrotectal stimulation stops interval timing in mice. Current Biology, 27(24), 3763-3770. | [86] | Wallace, D. G., Wallace, P. S., Field, E., & Whishaw, I. Q. (2006). Pharmacological manipulations of food protection behavior in rats: Evidence for dopaminergic contributions to time perception during a natural behavior. Brain Research, 1112(1), 213-221. | [87] | Wilson, M. P., & Keller, F. S. (1953). On the selective reinforcement of spaced responses. Journal of Comparative and Physiological Psychology, 46(3), 190-193. | [88] | Wittmann, M. (2013). The inner sense of time: How the brain creates a representation of duration. Nature Reviews Neuroscience, 14(3), 217-223. | [89] | Xu, M., Zhang, S. Y., Dan, Y., & Poo, M. M. (2014). Representation of interval timing by temporally scalable firing patterns in rat prefrontal cortex. Proceedings of the National Academy of Sciences, 111(1), 480-485. | [90] | Yamaguchi, K., & Sakurai, Y. (2014). Novel behavioral tasks to explore cerebellar temporal processing in milliseconds in rats. Behavioural Brain Research, 263, 138-143. |
|