Please wait a minute...
心理科学进展  2020, Vol. 28 Issue (1): 111-127    DOI: 10.3724/SP.J.1042.2020.00111
     研究前沿 本期目录 | 过刊浏览 | 高级检索 |
计算精神病学:抑郁症研究和临床应用的新视角
区健新1,2,吴寅1,2,刘金婷1,2,李红1,2,3()
1深圳大学心理学院
2 深圳市情绪与社会认知科学重点实验室
3 深圳市神经科学研究院, 深圳 518060
Computational psychiatry: A new perspective on research and clinical applications in depression
OU Jianxin1,2,WU Yin1,2,LIU Jinting1,2,LI Hong1,2,3()
1 School of Psychology, Shenzhen University
2 Shenzhen Key Laboratory of Affective and Social Cognitive Science
3 Shenzhen Institute of Neuroscience, Shenzhen 518060, China
全文: PDF(837 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

抑郁症是一种复杂而异质的精神疾病, 给全球带来沉重的疾病负担。尽管基于症状学的诊断方法已被广泛应用于各领域, 但这种方法并不利于病理机制的探讨。另外, 该诊断方法预测效度较低, 导致其难以准确评估和比较各种治疗方案的疗效。计算精神病学方法则能通过理论驱动和数据驱动两种互补的方法解决上述问题, 从而提高对抑郁症的认识、预防和治疗。理论驱动方法基于经验知识或假设, 利用计算建模方法对数据进行多水平分析; 数据驱动方法则基于机器学习算法分析高维数据, 提高抑郁症诊断和预测的准确性, 进而提高治疗的精准度。理论驱动和数据驱动方法的发展与结合, 以及人才和资源的整合, 将会更有效地推进抑郁症的防治。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
区健新
吴寅
刘金婷
李红
关键词 抑郁症计算精神病学计算模型机器学习诊断治疗    
Abstract

Depression, a complex and heterogeneous mental disorder, leads to great global burdens of disease. Although diagnosis based on nosology is broadly used in several domains, it is still unable to direct the exploration of pathological mechanism of depression. In addition, several treatments developed by this diagnosis have poor outcomes due to its low prediction validity. Computational approaches to psychiatry remedy those limitations and help to improve understanding, prediction and treatment for depression by two complementary approaches: data-driven and theory-driven. Theory-driven approaches apply models to multiple levels of analysis from the prior knowledge or hypojournal of depression. Data-driven approaches, however, adopt machine-learning methods to analyze high-dimensional data to improve the diagnostic and predictive accuracies of depression, and eventually, promote the treatment effects. With the development and combination of these two approaches as well as the integration of resources, it is promising to cure depression and prevent it from occurrence.

Key wordsdepression    computational psychiatry    computational models    machine learning    diagnosis    treatment
收稿日期: 2019-01-29      出版日期: 2019-11-21
ZTFLH:  R395  
基金资助:国家自然科学基金(31671150, 31600928);广东省普通高校创新团队建设项目(2015KCXTD009);广东省省级基础研究及应用研究重大项目(2016KZDXM009);深圳市基础研究布局项目(JCYJ20150729104249783, JCYJ20170818110103216, JCYJ20170412164413575);深圳市孔雀计划项目(KQTD2015033016104926)
通讯作者: 李红     E-mail: lihongszu@szu.edu.cn
引用本文:   
区健新,吴寅,刘金婷,李红. (2020). 计算精神病学:抑郁症研究和临床应用的新视角. 心理科学进展, 28(1), 111-127.
OU Jianxin,WU Yin,LIU Jinting,LI Hong. (2020). Computational psychiatry: A new perspective on research and clinical applications in depression. Advances in Psychological Science, 28(1), 111-127.
链接本文:  
http://journal.psych.ac.cn/xlkxjz/CN/10.3724/SP.J.1042.2020.00111      或      http://journal.psych.ac.cn/xlkxjz/CN/Y2020/V28/I1/111
1 孙也婷, 陈桃林, 何度, 董再全, 程勃超, 王淞 , .. 龚启勇. (印刷中). 基于精神影像和人工智能的抑郁症客观生物标志物研究进展.生物化学与生物物理进展.
2 文宏伟, 陆菁菁, 何晖光 . ( 2018). 机器学习在神经精神疾病诊断及预测中的应用. 协和医学杂志, 9( 1), 19-24.
3 谢小华, 冯建峰 . ( 2019). 上海市脑与类脑智能基础转化应用研究的现状及展望. 心理学通讯, 2( 2), 84-87.
4 Almgren H., van de Steen F., Kuhn S., Razi A., Friston K., & Marinazzo D . ( 2018). Variability and reliability of effective connectivity within the core default mode network: A multi-site longitudinal spectral DCM study. Neuroimage, 183, 757-768. doi: 10.1016/j.neuroimage. 2018.08.053
doi: 10.1016/j.neuroimage. 2018.08.053
5 Andrews S., Tsochantaridis I., & Hofmann T . ( 2002). Support vector machines for multiple-instance learning. Paper presented at the Advances in Neural Information Processing Systems 15, Vancouver, British Columbia, Canada.
6 ArnstenA.F., . ( 2009). Stress signalling pathways that impair prefrontal cortex structure and function. Nature Reviews Neuroscience, 10( 6), 410-422. doi: 10.1038/nrn2648
doi: 10.1038/nrn2648
7 AshbyW.R., . ( 1947). Principles of the self-organizing dynamic system. Journal of General Psychology, 37( 2), 125-128. doi: 10.1080/00221309.1947.9918144
doi: 10.1080/00221309.1947.9918144
8 AssociationA.P., . ( 2013). Diagnostic and statistical manual of mental disorders (DSM-5?): American Psychiatric Pub.
9 Bahn S., Noll R., Barnes A., Schwarz E., & Guest P. C . ( 2011). Challenges of introducing new biomarker products for neuropsychiatric disorders into the market. International Review of Neurobiology, 101, 299-327. doi: 10.1016/B978-0-12-387718-5.00012-2
doi: 10.1016/B978-0-12-387718-5.00012-2
10 Boes A. D., Uitermarkt B. D., Albazron F. M., Lan M. J., Liston C., Pascual-Leone A., .. Fox M. D . ( 2018). Rostral anterior cingulate cortex is a structural correlate of repetitive TMS treatment response in depression. Brain Stimulation, 11( 3), 575-581. doi: 10.1016/j.brs.2018.01.029
doi: 10.1016/j.brs.2018.01.029
11 BzdokD., &Meyer-Lindenberg, A . ( 2018). Machine learning for precision psychiatry: Opportunities and challenges. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, 3( 3), 223-230. doi: 10.1016/j.bpsc. 2017.11.007
doi: 10.1016/j.bpsc. 2017.11.007
12 ChekroudA.M., . ( 2017). Bigger data, harder questions- opportunities throughout mental health care. JAMA Psychiatry, 74( 12), 1183-1184. doi: 10.1001/jamapsychiatry. 2017.3333
doi: 10.1001/jamapsychiatry. 2017.3333
13 Chekroud A. M., Gueorguieva R., Krumholz H. M., Trivedi M. H., Krystal J. H., & McCarthy G . ( 2017). Reevaluating the efficacy and predictability of antidepressant treatments: A symptom clustering approach. JAMA Psychiatry, 74( 4), 370-378. doi: 10.1001/ jamapsychiatry. 2017.0025
doi: 10.1001/ jamapsychiatry. 2017.0025
14 Chekroud A. M., Lane C. E., & Ross D. A . ( 2017). Computational psychiatry: Embracing uncertainty and focusing on individuals, not averages. Biological Psychiatry, 82( 6), e45-e47. doi: 10.1016/j.biopsych.2017. 07.011
doi: 10.1016/j.biopsych.2017. 07.011
15 Chekroud A. M., Zotti R. J., Shehzad Z., Gueorguieva R., Johnson M. K., Trivedi M. H., .. Corlett P. R . ( 2016). Cross-trial prediction of treatment outcome in depression: A machine learning approach. Lancet Psychiatry, 3( 3), 243-250. doi: 10.1016/S2215-0366(15)00471-X
doi: 10.1016/S2215-0366(15)00471-X
16 Chen C., Takahashi T., Nakagawa S., Inoue T., & Kusumi I . ( 2015). Reinforcement learning in depression: A review of computational research. Neuroscience and Biobehavioral Reviews, 55, 247-267. doi: 10.1016/j.neubiorev.2015.05. 005
doi: 10.1016/j.neubiorev.2015.05. 005
17 Cicero D. C., Martin E. A., Becker T. M., & Kerns J. G . ( 2014). Reinforcement learning deficits in people with schizophrenia persist after extended trials. Psychiatry Research, 220( 3), 760-764. doi: 10.1016/j.psychres.2014.08. 013
doi: 10.1016/j.psychres.2014.08. 013
18 Clark L., Chamberlain S. R., & Sahakian B. J . ( 2009). Neurocognitive mechanisms in depression: Implications for treatment. Annual Review of Neuroscience, 32( 1), 57-74. doi: 10.1146/annurev.neuro.31.060407.125618
doi: 10.1146/annurev.neuro.31.060407.125618
19 Cooper J. A., Arulpragasam A. R., & Treadway M. T . ( 2018). Anhedonia in depression: Biological mechanisms and computational models. Current Opinion in Behavioral Sciences, 22, 128-135. doi: 10.1016/j.cobeha.2018.01.024
doi: 10.1016/j.cobeha.2018.01.024
20 CuiZ., &Gong, G . ( 2018). The effect of machine learning regression algorithms and sample size on individualized behavioral prediction with functional connectivity features. Neuroimage, 178, 622-637. doi: 10.1016/j.neuroimage. 2018.06.001
doi: 10.1016/j.neuroimage. 2018.06.001
21 CuthbertB.., &Insel T.R, . ( 2013). Toward the future of psychiatric diagnosis: The seven pillars of RDoC. BMC Medicine, 11( 1), 126. doi: 10.1186/1741-7015-11-126
doi: 10.1186/1741-7015-11-126
22 Czajkowski S. M., Powell L. H., Adler N., Naar-King S., Reynolds K. D., Hunter C. M., .. Charlson M. E . ( 2015). From ideas to efficacy: The ORBIT model for developing behavioral treatments for chronic diseases. Health Psychology, 34( 10), 971-982. doi: 10.1037/hea0000161
doi: 10.1037/hea0000161
23 Davey C., Breakspear M., Pujol J., & Harrison B . ( 2018). 201. A dynamic causal model of the depressed self. Biological Psychiatry, 83( 9). doi: 10.1016/j.biopsych. 2018.02.220
doi: 10.1016/j.biopsych. 2018.02.220
24 Daw N. D., Gershman S. J., Seymour B., Dayan P., & Dolan R. J . ( 2011). Model-based influences on humans' choices and striatal prediction errors. Neuron, 69( 6), 1204-1215. doi: 10.1016/j.neuron.2011.02.027
doi: 10.1016/j.neuron.2011.02.027
25 Daw N. D., Niv Y., & Dayan P . ( 2005). Uncertainty-based competition between prefrontal and dorsolateral striatal systems for behavioral control. Nature Neuroscience, 8( 12), 1704-1711. doi: 10.1038/nn1560
doi: 10.1038/nn1560
26 DeBattista C., Kinrys G., Hoffman D., Goldstein C., Zajecka J., Kocsis J., .. Fava M . ( 2011). The use of referenced-EEG (rEEG) in assisting medication selection for the treatment of depression. Journal of Psychiatric Research, 45( 1), 64-75. doi: 10.1016/j.jpsychires.2010.05. 009
doi: 10.1016/j.jpsychires.2010.05. 009
27 DeRubeis R. J., Cohen Z. D., Forand N. R., Fournier J. C., Gelfand L. A., & Lorenzo-Luaces L . ( 2014). The Personalized Advantage Index: Translating research on prediction into individualized treatment recommendations. A demonstration. PloS One, 9( 1), e83875. doi: 10. 1371/journal.pone.0083875
doi: 10. 1371/journal.pone.0083875
28 Dillon D. G., Wiecki T., Pechtel P., Webb C., Goer F., Murray L., .. Pizzagalli D. A . ( 2015). A computational analysis of flanker interference in depression. Psychological Medicine, 45( 11), 2333-2344. doi: 10.1017/ S0033291715000276
doi: 10.1017/ S0033291715000276
29 Doll B. B., Bath K. G., Daw N. D., & Frank M. J . ( 2016). Variability in dopamine genes dissociates model-based and model-free reinforcement learning. Journal of Neuroscience, 36( 4), 1211-1222. doi: 10.1523/JNEUROSCI. 1901-15.2016
doi: 10.1523/JNEUROSCI. 1901-15.2016
30 Donde C., Amad A., Nieto I., Brunoni A. R., Neufeld N. H., Bellivier F., .. Geoffroy P. A . ( 2017). Transcranial direct-current stimulation (tDCS) for bipolar depression: A systematic review and meta-analysis. Progress in Neuro- Psychopharmacology and Biological Psychiatry, 78, 123-131. doi: 10.1016/j.pnpbp.2017.05.021
doi: 10.1016/j.pnpbp.2017.05.021
31 DruckerE., &Krapfenbauer, K . ( 2013). Pitfalls and limitations in translation from biomarker discovery to clinical utility in predictive and personalised medicine. The EPMA Journal, 4( 1), 7. doi: 10.1186/1878-5085-4-7
doi: 10.1186/1878-5085-4-7
32 Drysdale A. T., Grosenick L., Downar J., Dunlop K., Mansouri F., Meng Y., .. Liston C . ( 2017). Resting-state connectivity biomarkers define neurophysiological subtypes of depression. Nature Medicine, 23( 1), 28-38. doi: 10.1038/nm.4246
doi: 10.1038/nm.4246
33 Dutilh G., Vandekerckhove J., Forstmann B. U., Keuleers E., Brysbaert M., & Wagenmakers E. J . ( 2012). Testing theories of post-error slowing. Attention Perception & Psychophysics, 74( 2), 454-465. doi: 10.3758/s13414-011- 0243-2
doi: 10.3758/s13414-011- 0243-2
34 Eldar E., Roth C., Dayan P., & Dolan R. J . ( 2018). Decodability of reward learning signals predicts mood fluctuations. Current Biology, 28( 9), 1433-1439. doi: 10.1016/j.cub.2018.03.038
doi: 10.1016/j.cub.2018.03.038
35 Etkin, A. ( 2018). Addressing the causality gap in human psychiatric neuroscience. JAMA Psychiatry, 75( 1), 3-4. doi: 10.1001/jamapsychiatry.2017.3610
doi: 10.1001/jamapsychiatry.2017.3610
36 Farhan A. A., Lu J., Bi J., Russell A., Wang B., & Bamis A . ( 2016). Multi-view Bi-clustering to identify smartphone sensing features indicative of depression. Paper presented at the 2016 IEEE First International Conference on Connected Health: Applications, Systems and Engineering Technologies (CHASE), Washington, DC, USA.
37 Feng Z., Xu S., Huang M., Shi Y., Xiong B., & Yang H . ( 2016). Disrupted causal connectivity anchored on the anterior cingulate cortex in first-episode medication-naive major depressive disorder. Progress in Neuro- Psychopharmacology and Biological Psychiatry, 64, 124-130. doi: 10.1016/j.pnpbp.2015.07.008
doi: 10.1016/j.pnpbp.2015.07.008
38 Forstmann B. U., Ratcliff R., & Wagenmakers E. J . ( 2016). Sequential sampling models in cognitive neuroscience: Advantages, applications, and extensions. Annual Review of Psychology, 67, 641-666. doi: 10.1146/annurev-psych- 122414-033645
doi: 10.1146/annurev-psych- 122414-033645
39 Fr?ssle S., Lomakina E. I., Razi A., Friston K. J., Buhmann J. M., & Stephan K. E . ( 2017). Regression DCM for fMRI. Neuroimage, 155, 406-421. doi: 10.1016/j.neuroimage.2017.02.090
doi: 10.1016/j.neuroimage.2017.02.090
40 Fr?ssle S., Yao Y., Schobi D., Aponte E. A., Heinzle J., & Stephan K. E . ( 2018). Generative models for clinical applications in computational psychiatry. Wiley Interdisciplinary Reviews: Cognitive Science, 9( 3), e1460. doi: 10.1002/wcs.1460
doi: 10.1002/wcs.1460
41 FristonK.J., . ( 2010). The free-energy principle: A unified brain theory? Nature Reviews Neuroscience, 11( 2), 127-138. doi: 10.1038/nrn2787
doi: 10.1038/nrn2787
42 Friston K. J., Harrison L., & Penny W . ( 2003). Dynamic causal modelling. Neuroimage, 19( 4), 1273-1302. doi: 10. 1016/s1053-8119(03)00202-7
doi: 10. 1016/s1053-8119(03)00202-7
43 Friston K. J., Kahan J., Biswal B., & Razi A . ( 2014). A DCM for resting state fMRI. Neuroimage, 94, 396-407. doi: 10.1016/j.neuroimage.2013.12.009
doi: 10.1016/j.neuroimage.2013.12.009
44 Friston K. J., Litvak V., Oswal A., Razi A., Stephan K. E., van Wijk, B. C. M., .. Zeidman P . ( 2016). Bayesian model reduction and empirical Bayes for group (DCM) studies. Neuroimage, 128, 413-431. doi: 10.1016/j. neuroimage. 2015.11.015
doi: 10.1016/j. neuroimage. 2015.11.015
45 Friston K. J., Preller K. H., Mathys C., Cagnan H., Heinzle J., Razi A., & Zeidman P . ( 2019). Dynamic causal modelling revisited. Neuroimage, 199, 730-744. doi: 10.1016/j.neuroimage.2017.02.045
doi: 10.1016/j.neuroimage.2017.02.045
46 Gilmartin M. R., Balderston N. L., & Helmstetter F. J . ( 2014). Prefrontal cortical regulation of fear learning. Trends in Neurosciences, 37( 8), 455-464. doi: 10.1016/ j.tins.2014.05.004
doi: 10.1016/ j.tins.2014.05.004
47 GoldJ.., &Shadlen M.N, . ( 2007). The neural basis of decision making. Annual Review of Neuroscience, 30( 1), 535-574. doi: 10.1146/annurev.neuro.29.051605.113038
doi: 10.1146/annurev.neuro.29.051605.113038
48 GoldbergD., &Fawcett, J . ( 2012). The importance of anxiety in both major depression and bipolar disorder. Depression and Anxiety, 29( 6), 471-478. doi: 10.1002/ da.21939
doi: 10.1002/ da.21939
49 GomezP., &Perea, M . ( 2014). Decomposing encoding and decisional components in visual-word recognition: A diffusion model analysis. Quarterly Journal of Experimental Psychology, 67( 12), 2455-2466. doi: 10.1080/17470218.2014.937447
doi: 10.1080/17470218.2014.937447
50 Hammen C.., ( 2018). Risk factors for depression: An autobiographical review. Annual Review of Clinical Psychology, 14, 1-28. doi: 10.1146/annurev-clinpsy-050817- 084811
doi: 10.1146/annurev-clinpsy-050817- 084811
51 Hanks T. D., Ditterich J., & Shadlen M. N . ( 2006). Microstimulation of macaque area LIP affects decision-making in a motion discrimination task. Nature Neuroscience, 9( 5), 682-689. doi: 10.1038/nn1683
doi: 10.1038/nn1683
52 Haque A., Guo M., Miner A. S., & Li F.-F . ( 2018). Measuring depression symptom severity from spoken language and 3D facial expressions. Arxiv Preprint Arxiv:1811.08592.
53 Heller A. S., Ezie C. E. C., Otto A. R., & Timpano K. R . ( 2018). Model-based learning and individual differences in depression: The moderating role of stress. Behaviour Research and Therapy, 111, 19-26. doi: 10.1016/j.brat. 2018.09.007
doi: 10.1016/j.brat. 2018.09.007
54 Herrman H., Kieling C., McGorry P., Horton R., Sargent J., & Patel V . ( 2019). Reducing the global burden of depression: A Lancet-World Psychiatric Association Commission. The Lancet, 393( 10189), e42-e43. doi: 10.1016/ s0140-6736(18)32408-5
doi: 10.1016/ s0140-6736(18)32408-5
55 Honnorat N., Dong A., Meisenzahl-Lechner E., Koutsouleris N., & Davatzikos C . ( 2017). Neuroanatomical heterogeneity of schizophrenia revealed by semi-supervised machine learning methods. Schizophrenia Research . doi: 10.1016/j. schres.2017.12.008
doi: 10.1016/j. schres.2017.12.008
56 HusainM., &Roiser J.P, . ( 2018). Neuroscience of apathy and anhedonia: A transdiagnostic approach. Nature Reviews Neuroscience, 19( 8), 470-484. doi: 10.1038/ s41583-018-0029-9
doi: 10.1038/ s41583-018-0029-9
57 Huys Q.J. M . (2015) Computational psychiatry. In: Jaeger D., Jung R. (Eds.) Encyclopedia of computational neuroscience (pp. 775-783). Springer, New York, NY
58 HuysQ. J.M., . ( 2018 a). Advancing clinical improvements for patients using the theory-driven and data-driven branches of computational psychiatry. JAMA Psychiatry, 75( 3), 225-226. doi: 10.1001/jamapsychiatry.2017.4246
doi: 10.1001/jamapsychiatry.2017.4246
59 Huys Q. J.M. (2018b). Bayesian approaches to learning and decision-making. In A. Anticevic & J. D. Murray (Eds.), Computational Psychiatry (pp. 247-271): Academic Press.
60 Huys Q. J. M., Maia T. V., & Frank M. J . ( 2016). Computational psychiatry as a bridge from neuroscience to clinical applications. Nature Neuroscience, 19( 3), 404-413. doi: 10.1038/nn.4238
doi: 10.1038/nn.4238
61 Huys Q. J. M., Moutoussis M., & Williams J . (2011). Are computational models of any use to psychiatry? Neural Networks, 24( 6), 544-551. doi: 10.1016/j.neunet.2011.03.001
doi: 10.1016/j.neunet.2011.03.001
62 InselT.., &Cuthbert B.N, . ( 2015). Medicine. Brain disorders? Precisely. Science, 348( 6234), 499-500. doi: 10.1126/science.aab2358
doi: 10.1126/science.aab2358
63 Janssen R. J., Mourao-Miranda J., & Schnack H. G . ( 2018). Making individual prognoses in psychiatry using neuroimaging and machine learning. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, 3( 9), 798-808. doi: 10.1016/j.bpsc.2018.04.004
doi: 10.1016/j.bpsc.2018.04.004
64 Kapur S., Phillips A. G., & Insel T. R . ( 2012). Why has it taken so long for biological psychiatry to develop clinical tests and what to do about it? Molecular Psychiatry, 17( 12), 1174-1179. doi: 10.1038/mp.2012.105
doi: 10.1038/mp.2012.105
65 KendlerK.S., . (2008). Explanatory models for psychiatric illness. American Journal of Psychiatry, 165( 6), 695-702. doi: 10.1176/appi.ajp.2008.07071061
doi: 10.1176/appi.ajp.2008.07071061
66 KrajbichI., &Rangel, A . (2011). Multialternative drift-diffusion model predicts the relationship between visual fixations and choice in value-based decisions. Proceedings of the National Academy of Sciences of the United States of America, 108( 33), 13852-13857. doi: 10. 1073/pnas.1101328108
doi: 10. 1073/pnas.1101328108
67 LeCun Y., Bengio Y., & Hinton G . (2015). Deep learning. Nature, 521( 7553), 436-444. doi: 10.1038/nature14539
doi: 10.1038/nature14539
68 Ledford, H. ( 2014). Medical research: If depression were cancer. Nature, 515( 7526), 182-184. doi: 10.1038/515182a
doi: 10.1038/515182a
69 Lee D., Seo H., & Jung M. W . (2012). Neural basis of reinforcement learning and decision making. Annual Review of Neuroscience, 35( 1), 287-308. doi: 10.1146/ annurev-neuro-062111-150512
doi: 10.1146/ annurev-neuro-062111-150512
70 Li B., Daunizeau J., Stephan K. E., Penny W., Hu D., & Friston K . (2011). Generalised filtering and stochastic DCM for fMRI. Neuroimage, 58( 2), 442-457. doi: 10. 1016/j.neuroimage.2011.01.085
doi: 10. 1016/j.neuroimage.2011.01.085
71 LibbrechtM.., &Noble W.S, . (2015). Machine learning applications in genetics and genomics. Nature Reviews Genetics, 16( 6), 321-332. doi: 10.1038/nrg3920
doi: 10.1038/nrg3920
72 Lin T., Liu T., Lin Y., Yan L., Chen Z., & Wang J . (2017). Comparative study on serum levels of macro and trace elements in schizophrenia based on supervised learning methods. Journal of Trace Elements in Medicine and Biology, 43, 202-208. doi: 10.1016/j.jtemb.2017.03.010
doi: 10.1016/j.jtemb.2017.03.010
73 Lu Q., Li H., Luo G., Wang Y., Tang H., Han L., & Yao Z . ( 2012). Impaired prefrontal-amygdala effective connectivity is responsible for the dysfunction of emotion process in major depressive disorder: A dynamic causal modeling study on MEG. Neuroscience Letters, 523( 2), 125-130. doi: 10.1016/j.neulet.2012.06.058
doi: 10.1016/j.neulet.2012.06.058
74 Lu Y., Tang C., Liow C. S., Ng W. W., Ho C. S., & Ho R. C . ( 2014). A regressional analysis of maladaptive rumination, illness perception and negative emotional outcomes in Asian patients suffering from depressive disorder. Asian Journal of Psychiatry, 12, 69-76. doi: 10.1016/j.ajp.2014.06.014
doi: 10.1016/j.ajp.2014.06.014
75 MaiaT.., &Frank M.J, . ( 2011). From reinforcement learning models to psychiatric and neurological disorders. Nature Neuroscience, 14( 2), 154-162. doi: 10.1038/nn.2723
doi: 10.1038/nn.2723
76 Maia T. V., Huys Q. J. M., & Frank M. J . ( 2017). Theory-based computational psychiatry. Biological Psychiatry, 82( 6), 382-384. doi: 10.1016/j.biopsych.2017. 07.016
doi: 10.1016/j.biopsych.2017. 07.016
77 MalhiG.., &Mann J.J, . ( 2018). Depression. The Lancet, 392( 10161), 2299-2312. doi: 10.1016/s0140-6736(18)31948-2
doi: 10.1016/s0140-6736(18)31948-2
78 Mazurek M. E., Roitman J. D., Ditterich J., & Shadlen M. N . ( 2003). A role for neural integrators in perceptual decision making. Cerebral Cortex, 13( 11), 1257-1269. doi: 10.1093/cercor/bhg097
doi: 10.1093/cercor/bhg097
79 McEwenB.., &Morrison J.H, . ( 2013). The brain on stress: Vulnerability and plasticity of the prefrontal cortex over the life course. Neuron, 79( 1), 16-29. doi: 10.1016/ j.neuron.2013.06.028
doi: 10.1016/ j.neuron.2013.06.028
80 Mendelson A. F., Zuluaga M. A., Lorenzi M., Hutton B. F., Ourselin S .,& Alzheimer's Disease Neuroimaging I. .,( 2017). Selection bias in the reported performances of AD classification pipelines. Neuroimage: Clinical, 14, 400-416. doi: 10.1016/j.nicl.2016.12.018
doi: 10.1016/j.nicl.2016.12.018
81 Montague P. R., Dolan R. J., Friston K. J., & Dayan P . ( 2012). Computational psychiatry. Trends in Cognitive Sciences, 16( 1), 72-80. doi: 10.1016/j.tics.2011.11.018
doi: 10.1016/j.tics.2011.11.018
82 Moustafa A. A., Keri S., Somlai Z., Balsdon T., Frydecka D., Misiak B., & White C . ( 2015). Drift diffusion model of reward and punishment learning in schizophrenia: Modeling and experimental data. Behavioural Brain Research, 291, 147-154. doi: 10.1016/j.bbr.2015.05.024
doi: 10.1016/j.bbr.2015.05.024
83 Niv, Y. ( 2009). Reinforcement learning in the brain. Journal of Mathematical Psychology, 53( 3), 139-154. doi: 10. 1016/j.jmp.2008.12.005
doi: 10. 1016/j.jmp.2008.12.005
84 Nouretdinov I., Costafreda S. G., Gammerman A., Chervonenkis A., Vovk V., Vapnik V., & Fu C. H . ( 2011). Machine learning classification with confidence: Application of transductive conformal predictors to MRI-based diagnostic and prognostic markers in depression. Neuroimage, 56( 2), 809-813. doi: 10.1016/j. neuroimage.2010.05.023
doi: 10.1016/j. neuroimage.2010.05.023
85 Patel M. J., Andreescu C., Price J. C., Edelman K. L., Reynolds C. F .,3rd & Aizenstein, H. J. .,( 2015). Machine learning approaches for integrating clinical and imaging features in late-life depression classification and response prediction. International Journal of Geriatric Psychiatry, 30( 10), 1056-1067. doi: 10.1002/gps.4262
doi: 10.1002/gps.4262
86 Patel M. J., Khalaf A., & Aizenstein H. J . ( 2016). Studying depression using imaging and machine learning methods. Neuroimage: Clinical, 10, 115-123. doi: 10.1016/j.nicl. 2015.11.003
doi: 10.1016/j.nicl. 2015.11.003
87 Paulus M. P., Huys Q. J., & Maia T. V . ( 2016). A roadmap for the development of applied computational psychiatry. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, 1( 5), 386-392. doi: 10.1016/j.bpsc.2016. 05.001
doi: 10.1016/j.bpsc.2016. 05.001
88 Pe M. L., Vandekerckhove J., & Kuppens P . ( 2013). A diffusion model account of the relationship between the emotional flanker task and rumination and depression. Emotion, 13( 4), 739-747. doi: 10.1037/a0031628
doi: 10.1037/a0031628
89 PizzagalliD.A., . ( 2014). Depression, stress, and anhedonia: Toward a synjournal and integrated model. Annual Review of Clinical Psychology, 10( 1), 393-423. doi: 10.1146/ annurev-clinpsy-050212-185606
doi: 10.1146/ annurev-clinpsy-050212-185606
90 Radenbach C., Reiter A. M., Engert V., Sjoerds Z., Villringer A., Heinze H. J., .. Schlagenhauf F . ( 2015). The interaction of acute and chronic stress impairs model-based behavioral control. Psychoneuroendocrinology, 53, 268-280. doi: 10.1016/j.psyneuen.2014.12.017
doi: 10.1016/j.psyneuen.2014.12.017
91 Ratcliff ,R.( 1978). A theory of memory retrieval. Psychological Review, 85( 2), 59-108. doi: 10.1037/0033-295x.85.2.59
doi: 10.1037/0033-295x.85.2.59
92 RatcliffR., &McKoon, G . ( 2008). The diffusion decision model: Theory and data for two-choice decision tasks. Neural Computation, 20( 4), 873-922. doi: 10.1162/neco. 2008.12-06-420
doi: 10.1162/neco. 2008.12-06-420
93 Ratcliff R., Smith P. L., Brown S. D., & McKoon G . ( 2016). Diffusion decision model: Current issues and history. Trends in Cognitive Sciences, 20( 4), 260-281. doi: 10.1016/j.tics.2016.01.007
doi: 10.1016/j.tics.2016.01.007
94 Razi A., Kahan J., Rees G., & Friston K. J . ( 2015). Construct validation of a DCM for resting state fMRI. Neuroimage, 20, 1-14. doi: 10.1016/j.neuroimage.2014. 11.027
doi: 10.1016/j.neuroimage.2014. 11.027
95 RobinsonO.., &Chase H.W, . ( 2017). Learning and choice in mood disorders: Searching for the computational parameters of anhedonia. Computational Psychiatry, 1( 1), 208-233. doi: 10.1162/CPSY_a_00009
doi: 10.1162/CPSY_a_00009
96 Rock P. L., Roiser J. P., Riedel W. J., & Blackwell A. D . ( 2014). Cognitive impairment in depression: A systematic review and meta-analysis. Psychological Medicine, 44( 10), 2029-2040. doi: 10.1017/S0033291713002535
doi: 10.1017/S0033291713002535
97 Rothkirch M., Tonn J., Kohler S., & Sterzer P . ( 2017). Neural mechanisms of reinforcement learning in unmedicated patients with major depressive disorder. Brain, 140( 4), 1147-1157. doi: 10.1093/brain/awx025
doi: 10.1093/brain/awx025
98 Rush A. J., Trivedi M. H., Wisniewski S. R., Nierenberg A. A., Stewart J. W., Warden D., .. Fava M . ( 2006). Acute and longer-term outcomes in depressed outpatients requiring one or several treatment steps: A STAR*D report. American Journal of Psychiatry, 163( 11), 1905-1917. doi: 10.1176/ajp.2006.163.11.1905
doi: 10.1176/ajp.2006.163.11.1905
99 RussoS.., &Nestler E.J, . ( 2013). The brain reward circuitry in mood disorders. Nature Reviews Neuroscience, 14( 9), 609-625. doi: 10.1038/nrn3381
doi: 10.1038/nrn3381
100 Rutledge R. B., Moutoussis M., Smittenaar P., Zeidman P., Taylor T., Hrynkiewicz L., .. Dolan R. J . ( 2017). Association of neural and emotional impacts of reward prediction errors with major depression. JAMA Psychiatry, 74( 8), 790-797. doi: 10.1001/jamapsychiatry.2017.1713
doi: 10.1001/jamapsychiatry.2017.1713
101 SchnackH.., &Kahn R.S, . ( 2016). Detecting neuroimaging biomarkers for psychiatric disorders: Sample size matters. Frontiers in Psychiatry, 7, 50. doi: 10.3389/fpsyt.2016.00050
doi: 10.3389/fpsyt.2016.00050
102 Schwabe,L. .( 2013) Stress and the engagement of multiple memory systems: Integration of animal and human studies. Hippocampus, 23( 11), 1035-1043. doi: 10.1002/hipo.22175
doi: 10.1002/hipo.22175
103 SchwabeL., &Wolf O.T, . ( 2011). Stress-induced modulation of instrumental behavior: From goal-directed to habitual control of action. Behavioural Brain Research, 219( 2), 321-328. doi: 10.1016/j.bbr.2010.12.038
doi: 10.1016/j.bbr.2010.12.038
104 Sejnowski T. J., Koch C., & Churchland P. S . ( 1988). Computational neuroscience. Science, 241( 4871), 1299-1306. doi: 10.1126/science.3045969
doi: 10.1126/science.3045969
105 Shalev-Shwartz S., & Ben-David, S. ( 2014) .Understanding machine learning:From theory to algorithms: Cambridge University Press From theory to algorithms: Cambridge University Press.
106 Shatte A. B. R., Hutchinson D. M., & Teague S. J . ( 2019). Machine learning in mental health: A scoping review of methods and applications. Psychological Medicine, 49( 9), 1426-1448. doi: 10.1017/S0033291719000151
doi: 10.1017/S0033291719000151
107 Singh A., Thakur N., & Sharma A . ( 2016). A review of supervised machine learning algorithms. Paper presented at the International Conference on Computing for Sustainable Global Development, New Delhi, India.
108 Stephan K. E., Iglesias S., Heinzle J., & Diaconescu A. O . ( 2015). Translational perspectives for computational neuroimaging. Neuron, 87( 4), 716-732. doi: 10.1016/j. neuron.2015.07.008
doi: 10.1016/j. neuron.2015.07.008
109 Stephan K. E., Kasper L., Harrison L. M., Daunizeau J., den Ouden H. E., Breakspear M., & Friston K. J . ( 2008). Nonlinear dynamic causal models for fMRI. Neuroimage, 42( 2), 649-662. doi: 10.1016/j.neuroimage.2008.04.262
doi: 10.1016/j.neuroimage.2008.04.262
110 StephanK.., &Mathys, C . ( 2014). Computational approaches to psychiatry. Current Opinion in Neurobiology, 42, 85-92. doi: 10.1016/j.conb.2013.12.007
doi: 10.1016/j.conb.2013.12.007
111 Stephan K. E., Penny W. D., Moran R. J., den Ouden H. E., Daunizeau J., & Friston K. J . ( 2010). Ten simple rules for dynamic causal modeling. Neuroimage, 49( 4), 3099-3109. doi: 10.1016/j.neuroimage.2009.11.015
doi: 10.1016/j.neuroimage.2009.11.015
112 Stephan K. E., Schlagenhauf F., Huys Q. J. M., Raman S., Aponte E. A., Brodersen K. H., .. Heinz A . ( 2017). Computational neuroimaging strategies for single patient predictions. Neuroimage, 145( Pt B), 180-199. doi: 10.1016/ j.neuroimage.2016.06.038
doi: 10.1016/ j.neuroimage.2016.06.038
113 Sterzer P., Adams R. A., Fletcher P., Frith C., Lawrie S. M., Muckli L., .. Corlett P. R . ( 2018). The predictive coding account of psychosis. Biological Psychiatry, 84( 9), 634-643. doi: 10.1016/j.biopsych.2018.05.015
doi: 10.1016/j.biopsych.2018.05.015
114 SuttonR.., &Barto A.G, . ( 1998). Reinforcement learning: An introduction: MIT press.
115 SuttonR.., &Barto A.G, . ( 2018). Reinforcement learning: An introduction: MIT press.
116 Tran B. X., Vu G. T., Ha G. H., Vuong Q. H., Ho M. T., Vuong T. T .,.. Ho R. C. M. .,( 2019). Global evolution of research in artificial intelligence in health and medicine: A bibliometric study. Journal of Clinical Medicine, 8( 3), 360. doi: 10.3390/jcm8030360
doi: 10.3390/jcm8030360
117 Turner B. M., van Maanen L., & Forstmann B. U . ( 2015). Informing cognitive abstractions through neuroimaging: The neural drift diffusion model. Psychological Review, 122( 2), 312-336. doi: 10.1037/a0038894
doi: 10.1037/a0038894
118 van Ravenzwaaij, D., &Oberauer, K . ( 2009). How to use the diffusion model: Parameter recovery of three methods: EZ, fast-dm, and DMAT. Journal of Mathematical Psychology, 53( 6), 463-473. doi: 10.1016/j.jmp.2009.09.004
doi: 10.1016/j.jmp.2009.09.004
119 Vos T., Allen C., Arora M., Barber R. M., Bhutta Z. A., Brown A .,.. Murray C. J. L. .,( 2016). Global, regional, and national incidence, prevalence, and years lived with disability for 310 diseases and injuries, 1990-2015: A systematic analysis for the Global Burden of Disease Study 2015. The Lancet, 388( 10053), 1545-1602. doi: 10. 1016/s0140-6736(16)31678-6
doi: 10. 1016/s0140-6736(16)31678-6
120 Voss A., Nagler M., & Lerche V . ( 2013). Diffusion models in experimental psychology: A practical introduction. Experimental Psychology, 60( 6), 385-402. doi: 10.1027/ 1618-3169/a000218
doi: 10.1027/ 1618-3169/a000218
121 Wagstaff K., Cardie C., Rogers S., & Schr?dl S . ( 2001). Constrained k-means clustering with background knowledge. Paper presented at the Proceedings of the Eighteenth International Conference on Machine Learning, Williamstown, MA, USA.
122 Wang X. W., Nie D., & Lu B. L . ( 2014). Emotional state classification from EEG data using machine learning approach. Neurocomputing, 129, 94-106. doi: 10.1016/j. neucom.2013.06.046
doi: 10.1016/j. neucom.2013.06.046
123 White C. N., Ratcliff R., Vasey M. W., & McKoon G . ( 2009). Dysphoria and memory for emotional material: A diffusion-model analysis. Cognition & Emotion, 23( 1), 181-205. doi: 10.1080/02699930801976770
doi: 10.1080/02699930801976770
124 White C. N., Ratcliff R., Vasey M. W., & McKoon G . ( 2010 a). Anxiety enhances threat processing without competition among multiple inputs: A diffusion model analysis. Emotion, 10( 5), 662-677. doi: 10.1037/a0019474
doi: 10.1037/a0019474
125 White C. N., Ratcliff R., Vasey M. W., & McKoon G . ( 2010 b). Using diffusion models to understand clinical disorders. Journal of Mathematical Psychology, 54( 1), 39-52. doi: 10.1016/j.jmp.2010.01.004
doi: 10.1016/j.jmp.2010.01.004
126 WHO. ( 2018). Depression. Retrieved from
127 Wiecki T. V., Poland J., & Frank M. J . ( 2015). Model-based cognitive neuroscience approaches to computational psychiatry: Clustering and classification. Clinical Psychological Science, 3( 3), 378-399. doi: 10. 1177/2167702614565359
doi: 10. 1177/2167702614565359
128 Wiecki T. V., Sofer I., & Frank M. J . ( 2013). HDDM: Hierarchical bayesian estimation of the drift-diffusion model in python. Frontiers in Neuroinformatics, 7, 14. doi: 10.3389/fninf.2013.00014
doi: 10.3389/fninf.2013.00014
129 Williams L. M., Korgaonkar M. S., Song Y. C., Paton R., Eagles S., Goldstein-Piekarski A., .. Etkin A . ( 2015). Amygdala reactivity to emotional faces in the prediction of general and medication-specific responses to antidepressant treatment in the randomized iSPOT-D trial. Neuropsychopharmacology, 40( 10), 2398-2408. doi: 10. 1038/npp.2015.89
doi: 10. 1038/npp.2015.89
130 Wunderlich K., Dayan P., & Dolan R. J . ( 2012). Mapping value based planning and extensively trained choice in the human brain. Nature Neuroscience, 15( 5), 786-791. doi: 10.1038/nn.3068
doi: 10.1038/nn.3068
[1] 邸天琪, 黄昱静, 高军. 催产素对产后抑郁症患者母性行为的调节作用[J]. 心理科学进展, 2020, 28(3): 456-464.
[2] 李精精, 张剑, 田慧荣, Jeffrey B.Vancouver. 动态计算模型在组织行为学研究中的应用[J]. 心理科学进展, 2020, 28(2): 368-380.
[3] 尹倩兰, 陈艾彬, 邓光辉. 体像障碍的认知机制及治疗[J]. 心理科学进展, 2020, 28(2): 275-283.
[4] 董健宇, 韦文棋, 吴珂, 妮娜, 王粲霏, 付莹, 彭歆. 机器学习在抑郁症领域的应用[J]. 心理科学进展, 2020, 28(2): 266-274.
[5] 郑泓, 蒲城城, 王毅, 陈楚侨. 基于脑结构像的精神分裂症机器学习分类[J]. 心理科学进展, 2020, 28(2): 252-265.
[6] 高见,王鹏翀,李占江. 认知行为治疗的生物学机制[J]. 心理科学进展, 2019, 27(3): 522-532.
[7] 秦海霞,赵文瑞,喻婧,雷旭. 失眠患者静息态脑网络的改变:网络内与网络间的功能连接异常[J]. 心理科学进展, 2019, 27(2): 289-300.
[8] 刘春燕,陈功香. 自闭症谱系障碍个体的焦虑:发生机制、评估与治疗[J]. 心理科学进展, 2019, 27(10): 1713-1725.
[9] 靳宇倡,余梦,胡云龙. 网络游戏成瘾研究的争议及趋势[J]. 心理科学进展, 2019, 27(1): 83-95.
[10] 陈子晨, 张慧娟, 汪新建, 吕小康. 抑郁症起源的三类理论视角[J]. 心理科学进展, 2018, 26(6): 1041-1053.
[11] 林弋琪, 王希, 彭凯平, 倪士光.  虚拟现实技术与自闭症谱系障碍治疗:科技新希望[J]. 心理科学进展, 2018, 26(3): 518-526.
[12] 阎博, 樊富珉, 喻丰.  动觉共情干预在舞蹈动作治疗中的应用[J]. 心理科学进展, 2018, 26(3): 496-502.
[13] 周社刚, 张小远.  选择最佳治疗:来访者−治疗方法的匹配[J]. 心理科学进展, 2018, 26(2): 294-305.
[14] 高一珠, 陈孚, 辛涛, 詹沛达, 姜宇. 心理测量学模型在学习进阶中的应用:理论、途径和突破[J]. 心理科学进展, 2017, 25(9): 1623-1630.
[15] 佘壮, 孙启武, 江光荣, 史燕伟.  心理治疗中的正式反馈[J]. 心理科学进展, 2017, 25(7): 1197-1207.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《心理科学进展》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发  技术支持:support@magtech.com.cn