Please wait a minute...
心理科学进展  2018, Vol. 26 Issue (8): 1349-1364    DOI: 10.3724/SP.J.1042.2018.1349
     研究方法 本期目录 | 过刊浏览 | 高级检索 |
利用时频分析研究非相位锁定脑电活动
武侠1,钟楚鹏1,丁玉珑1,曲折1()
1中山大学心理系, 广州 510006
Application of time-frequency analysis in investigating non-phase locked components of EEG
Xia WU1,Chupeng ZHONG1,Yulong DING1,Zhe QU1()
1 Department of psychology, Sun Yat-sen University, Guangzhou 510006, China
全文: PDF(5045 KB)   HTML
输出: BibTeX | EndNote (RIS)       背景资料
文章导读  
摘要 

时频分析技术自20世纪80年代被引入到心理学脑电数据分析领域以来, 克服了传统的时域ERP方法只能分析相位锁定成分的缺陷, 可以帮助研究者挖掘到脑电信号中非相位锁定的成分。在心理学领域, 应用最多的时频分析方法是小波变换和Hilbert变换, 而能量、相位一致性和耦合是三个最常用的分析指标。研究者利用不同的分析指标来揭示不同的心智过程。不同频段的能量被认为体现了不同的认知过程, 如α能量被发现与注意选择性有关, 而γ能量则与特征整合相关。相位一致性常被用于讨论ERP产生的机制。耦合则通常说明了长距离脑区之间的信息交流以及高级脑区对低级脑区的认知控制, 在完成各种复杂认知任务的时候会表现出不同的耦合模式。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
武侠
钟楚鹏
丁玉珑
曲折
关键词 时频分析小波变换Hilbert变换能量相位一致性耦合    
Abstract

Since the introduction of the time-frequency analysis technique into the field of EEG data in the 1980’s, researchers can excavate non-phase locked components in EEG signals, overcoming the previous shortcomings of traditional ERP methods. In the field of psychology, the two most commonly used time-frequency analysis methods are wavelet transform and Hilbert transform. Power, phase locking index (PLI), and coherence are three important indices of time-frequency analysis. Power in different frequency band is typically considered to reflect different mental processes. For example, α power is frequently related to selective attention, while γ energy is often associated with feature binding. Researchers use PLI to investigate the mechanism generated by an ERP component. Coherence indicates the exchange of information between long-distance brain regions and cognitive control of higher-level brain regions in the low-level brain regions, which show different patterns in various complex cognitive tasks.

Key wordstime-frequency analysis    wavelet transform    Hilbert transform    power    PLI    coherence
收稿日期: 2017-10-16      出版日期: 2018-07-02
ZTFLH:  B845  
基金资助:国家自然科学基金项目(31471070);国家自然科学基金项目(31271190)
通讯作者: 曲折     E-mail: quzhe@mail.sysu.edu.cn
引用本文:   
武侠,钟楚鹏,丁玉珑,曲折. (2018). 利用时频分析研究非相位锁定脑电活动. 心理科学进展, 26(8), 1349-1364.
Xia WU,Chupeng ZHONG,Yulong DING,Zhe QU. (2018). Application of time-frequency analysis in investigating non-phase locked components of EEG. Advances in Psychological Science, 26(8), 1349-1364.
链接本文:  
http://journal.psych.ac.cn/xlkxjz/CN/10.3724/SP.J.1042.2018.1349      或      http://journal.psych.ac.cn/xlkxjz/CN/Y2018/V26/I8/1349
  事件发生后可能的脑电活动变化。A, 频率反应(frequency response), 事件发生后原本脑电自发活动的振荡频率发生了变化; B, 振幅反应(amplitude response), 事件发生后, 原本脑电自发活动的能量发生了变化; C, 相位重置(phase resetting), 事件发生后, 原本脑电自发活动的相位发生了扰动, 相位在试次之间变得一致; D, 新增成分(additive response), 事件发生后, 出现了一种与自发脑电活动无关的新成分, 各试次之间新成分相似。(图摘自维基百科, "Neural oscillation," 2018)
  时变信号的傅立叶变换示意图。A、B为信号示意图, 其中A为前半段为振幅为1的10 Hz正弦振荡, 后半段为振幅为1.5的20 Hz余弦振荡; B为前半段为振幅为1.5的20 Hz余弦振荡, 后半段为振幅为1的10 Hz正弦振荡。C、D分别为A、B信号的傅立叶变换结果。
  图2中的两个时变信号的时频分析示意图。A、B、C分别给出了窗口傅立叶变换、小波变换、Hilbert变换的分析结果。第一列、第二列分别为对图2A和图2B信号的分析结果。彩图见电子版, 下同。
  复Morlet小波示意图, 实线是小波的实部, 虚线是小波的虚部。复Morlet小波的实部和虚部相位相差90度, 都可以看做是正余弦信号加了高斯窗口构成的向两端急剧衰减的振荡信号。
  窗口傅立叶变换和小波变换小波族(wavelet family)子小波对比。A, 窗口傅立叶变换的时间窗口长度固定, 对于高低频信号都有同样的时域和频域分辨率; B, 小波变换高低频的子小波有相同的周期数, 时间窗口长度并不相等。对于低频信号, 时间窗口更长, 时域分辨率更差, 频域分辨率更好; 高频信号则时间窗口短, 时域分辨率好, 频域分辨率差。
  计算evoked能量和induced能量示意图, A, 每个试次的γ振荡示意图, 蓝框内为evoked活动, 绿框内为induced活动; B, 波形叠加平均后的平均振荡波形, 只剩下了evoked活动; C, 每个试次的时频能量示意图, 可以看到每个试次的induced能量; D, 左侧evoked能量是平均波形时频分析的结果, 右侧induced能量是单个试次时频能量平均结果减去evoked能量的差异值。
  PLI计算原理示意图, A, 单个试次某时刻某频率的能量和相位用复平面内向量表示, 圆代表单位圆, 向量在单位圆上的投影为只表示相位大小的单位向量; B, 若干试次的单位向量(黑色的点为单位向量的末端, 省去了箭头), 这些单位向量集中在第一象限, 平均向量(绿色)的大小(PLI)接近于1; C, 若干试次的单位向量平均分散在4个象限, 平均向量的大小(PLI)接近于0。
  不同电极相位同步性计算原理示意图。A,上, 两个不同电极某试次某时刻各自的相位示意图, 下, 两个电极某试次某时刻的相位差; B,上, 两个不同电极另外一个试次某时刻(与A时刻相同)各自相位, 下, 两个电极该时刻相位差; C,左, 两电极不同试次某时刻相位差的分布靠近第一象限, 平均向量的模接近1, 右, 两电极不同试次某时刻相位差均匀分布, 平均向量的模接近于0。
  低频相位和高频能量耦合以及计算方法示意图。A为耦合示意图, 表现为高频能量以一定的低频周期振荡变化。B、C、D为耦合计算原理示意图, B为某个时刻高频能量和低频相位组成的复数在复平面上对应一个点; C为许多时刻点的分布, 偏向第一象限, 平均复向量指向第一象限; D为许多时刻点的分布, 在四个象限均匀分布, 平均向量长度很小, 几乎为0。
1 Allen, J. B . ( 1977). Short term spectral analysis, synthesis, and modification by discrete fourier transform. IEEE Transactions on Acoustics, Speech, and Signal Processing, ASSP-25( 3), 235-238.
2 Anguera J. A., Boccanfuso J., Rintoul J. L., Al-Hashimi O., Faraji F., Janowich J., .. Gazzaley A . ( 2013). Video game training enhances cognitive control in older adults. Nature, 501( 7465), 97-101.
pmid: 24005416
3 Axmacher N., Henseler M. M., Jensen O., Weinreich I., Elger C. E., & Fell J . ( 2010). Cross-frequency coupling supports multi-item working memory in the human hippocampus. Proceedings of the National Academy of Sciences of the United States of America, 107( 7), 3228-3233.
4 Bai O., Lin P., Vorbach S., Floeter M. K., Hattori N., & Hallett M . ( 2008). A high performance sensorimotor beta rhythm-based brain-computer interface associated with human natural motor behavior. Journal of Neural Engineering, 5( 1), 24-35.
5 Barnes J. J., Nobre A. C., Woolrich M. W., Baker K., & Astle D. E . ( 2016). Training working memory in childhood enhances coupling between frontoparietal control network and task-related regions. Journal of Neuroscience, 36( 34), 9001-9011.
6 Bastiaansen M., Mazaheri A., & Jensen, O .( 2012). Beyond ERPs: Oscillatory neuronal dynamics. In S J Luck & E S Kappenman (Eds), The Oxford handbook of event-related potential components (pp 31-50). New York: NY: Oxford University Press.
7 Becker R., Ritter P., & Villringer A . ( 2008). Influence of ongoing alpha rhythm on the visual evoked potential. Neuroimage, 39( 2), 707-716.
pmid: 17977023
8 Berger, H . ( 1929). über das Elektrenkephalogramm des Menschen. Archiv für Psychiatrie und Nervenkrankheiten, 87, 527-570.
9 Bernardino, A., & Santos-Victor, J . ( 2005). A real-time gabor primal sketch for visual attention. In J. S. Marques, N. Pérez de la Blanca, & P. Pina (Eds.), Pattern recognition and image analysis. IbPRIA 2005. Lecture notes in computer science, vol 3522( pp. 335-342). Berlin, Heidelberg: Springer.
10 Bonnefond, M., & Jensen, O . ( 2015). Gamma activity coupled to alpha phase as a mechanism for top-down controlled gating. PLoS One, 10( 6), e0128667.
pmid: 26039691
11 Bowyer, S. M . ( 2016). Coherence a measure of the brain networks: Past and present. Neuropsychiatric Electrophysiology, 2, 1.
12 Bruns, A . ( 2004). Fourier-, Hilbert- and wavelet-based signal analysis: Are they really different approaches? Journal of Neuroscience Methods, 137( 2), 321-332.
pmid: 15262077
13 Busch N. A., Dubois, J. & VanRullen, R .( 2009). The phase of ongoing EEG oscillations predicts visual perception. Journal of Neuroscience, 29( 24), 7869-7876.
14 Busch N. A., Herrmann C. S., Müller M. M., Lenz D., & Gruber T . ( 2006). A cross-laboratory study of event- related gamma activity in a standard object recognition paradigm. Neuroimage, 33( 4), 1169-1177.
15 Cabral J., Kringelbach M. L., & Deco G . ( 2014). Exploring the network dynamics underlying brain activity during rest. Progress in Neurobiology, 114, 102-131.
pmid: 24389385
16 Canolty R. T., Edwards E., Dalal S. S., Soltani M., Nagarajan S. S., Kirsch H. E., .. Knight R. T . ( 2006). High gamma power is phase-locked to theta oscillations in human neocortex. Science, 313( 5793), 1626-1628.
pmid: 16973878
17 Canolty, R. T., & Knight, R. T . ( 2010). The functional role of cross-frequency coupling. Trends in Cognitive Sciences, 14( 11), 506-515.
pmid: 20932795
18 Capilla A., Schoffelen J. M., Paterson G., Thut G., & Gross J . ( 2014). Dissociated α-band modulations in the dorsal and ventral visual pathways in visuospatial attention and perception. Cerebral Cortex, 24, 550-561.
19 Castelhano J., Rebola J., Leitão B., Rodriguez E., & Castelo-Branco M . ( 2013). To perceive or not perceive: The role of gamma-band activity in signaling object percepts. PLoS One, 8( 6), e66363.
pmid: 23785494
20 Cavanagh J. F., Cohen M. X., & Allen, J. J. B . ( 2009). Prelude to and resolution of an error: EEG phase synchrony reveals cognitive control dynamics during action monitoring. Journal of Neuroscience, 29( 1), 98-105.
21 Cavanagh J. F., Frank M. J., Klein T. J., & Allen, J. J. B . ( 2010). Frontal theta links prediction errors to behavioral adaptation in reinforcement learning. NeuroImage, 49( 4), 3198-3209.
pmid: 19969093
22 Daume J., Gruber T., Engel A. K., & Friese U . ( 2017). Phase-amplitude coupling and long-range phase synchronization reveal frontotemporal interactions during visual working memory. Journal of Neuroscience, 37( 2), 313-322.
23 de Lange F. P., Jensen O., Bauer M., & Toni I . ( 2008). Interactions between posterior gamma and frontal alpha/beta oscillations during imagined actions. Frontiers in Human Neuroscience, 2, 7.
24 Deiber M. P., Ibañez V., Missonnier P., Rodriguez C., & Giannakopoulos P . ( 2013). Age-associated modulations of cerebral oscillatory patterns related to attention control. NeuroImage, 82, 531-546.
pmid: 23777759
25 Doesburg S. M., Roggeveen A. B., Kitajo K., & Ward L. M . ( 2008). Large-scale gamma-band phase synchronization and selective attention. Cerebral Cortex, 18( 2), 386-396.
pmid: 17556771
26 Engel, A. K., & Fries, P . ( 2010). Beta-band oscillations--signalling the status quo? Current Opinion in Neurobiology, 20( 2), 156-165.
27 Fell, J . ( 2007). Cognitive neurophysiology: Beyond averaging. NeuroImage, 37( 4), 1069-1072.
28 Finger, H., & önig, P . ( 2014). Phase synchrony facilitates binding and segmentation of natural images in a coupled neural oscillator network. Frontiers in Computational Neuroscience, 7, 195.
29 Franaszczuk, P. J., & Bergey, G. K . ( 1999). An autoregressive method for the measurement of synchronization of interictal and ictal EEG signals. Biological Cybernetics, 81, 3-9.
30 Friese U., öster M., Hassler U., Martens U., Trujillo- Barreto N., & Gruber T . ( 2013). Successful memory encoding is associated with increased cross-frequency coupling between frontal theta and posterior gamma oscillations in human scalp-recorded EEG. NeuroImage, 66, 642-647.
31 Fu K.-M. G., Foxe J. J., Murray M. M., Higgins B. A., Javitt D. C., & Schroeder C. E . ( 2001). Attention- dependent suppression of distracter visual input can be cross-modally cued as indexed by anticipatory parieto- occipital alpha-band oscillations. Cognitive Brain Research, 12, 145-152.
32 Goffaux V., Mouraux A., Desmet S., & Rossion B . ( 2004). Human non-phase-locked gamma oscillations in experience- based perception of visual scenes. Neuroscience Letters, 354( 1), 14-17.
pmid: 14698471
33 Gola M., Magnuski M., Szumska I., & Wróbel A . ( 2013). EEG beta band activity is related to attention and attentional deficits in the visual performance of elderly subjects. International Journal of Psychophysiology, 89( 3), 334-341.
34 Greenblatt R. E., Pflieger M. E., & Ossadtchi A. E . ( 2012). Connectivity measures applied to human brain electrophysiological data. Journal of Neuroscience Methods, 207( 1), 1-16.
pmid: 22426415
35 Gruber, T., & Müller, M. M . ( 2005). Oscillatory brain activity dissociates between associative stimulus content in a repetition priming task in the human EEG. Cerebral Cortex, 15( 1), 109-116.
36 Gruber T., Trujillo-Barreto N. J., Giabbiconi C. M., Valdés-Sosa P. A., & Müller M. M . ( 2006). Brain electrical tomography (BET) analysis of induced gamma band responses during a simple object recognition task. NeuroImage, 29( 3), 888-900.
37 Händel B. F., Haarmeier T., & Jensen O . ( 2011). Alpha oscillations correlate with the successful inhibition of unattended stimuli. Journal of Cognitive Neuroscience, 23, 2494-2502.
38 Hanslmayr S., Gross J., Klimesch W., & Shapiro K. L . ( 2011). The role of alpha oscillations in temporal attention. Brain Research Reviews, 67, 331-343.
pmid: 21592583
39 Hassler U., Barreto N. T., & Gruber T . ( 2011). Induced gamma band responses in human EEG after the control of miniature saccadic artifacts. NeuroImage, 57( 4), 1411-1421.
pmid: 21645624
40 Hassler U., Friese U., Martens U., Trujillo-Barreto N., & Gruber T . ( 2013). Repetition priming effects dissociate between miniature eye movements and induced gamma- band responses in the human electroencephalogram. European Journal of Neuroscience, 38( 3), 2425-2433.
41 Hebert R., Lehmann D., Tan G., Travis F., & Arenander A . ( 2005). Enhanced EEG alpha time-domain phase synchrony during Transcendental Meditation: Implications for cortical integration theory. Signal Processing, 85( 11), 2213-2232.
42 Helfrich R. F., & Knight, R. T . ( 2016). Oscillatory dynamics of prefrontal cognitive control. Trends in Cognitive Sciences, 20( 12), 916-930.
pmid: 5127407
43 Helfrich R. F., Mander B. A., Jagust W. J., Knight R. T., & Walker M. P . ( 2018). Old brains come uncoupled in sleep: Slow wave-spindle synchrony, brain atrophy, and forgetting. Neuron, 97( 1), 221-230. e4.
pmid: 29249289
44 Huang N. E., Shen Z., Long S. R., Wu M. C., Shin H. H., Zheng Q., .. Liu H. H . ( 1998). The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 454, 903-995.
45 Ijspeert, A. J . ( 2008). Central pattern generators for locomotion control in animals and robots: A review. Neural Networks, 21( 4), 642-653.
pmid: 18555958
46 Jensen O., Bonnefond M., & VanRullen R . ( 2012). An oscillatory mechanism for prioritizing salient unattended stimuli. Trends in Cognitive Sciences, 16( 4), 200-206.
pmid: 22436764
47 Kelly S. P., Gomez-Ramirez M., & Foxe J. J . ( 2009). The strength of anticipatory spatial biasing predicts target discrimination at attended locations: A high-density EEG study. European Journal of Neuroscience, 30, 2224-2234.
48 Kelly S. P., Lalor E. C., Reilly R. B., & Foxe J. J . ( 2006). Increases in alpha oscillatory power reflect an active retinotopic mechanism for distracter suppression during sustained visuospatial attention. Journal of Neurophysiology, 95( 6), 3844-3851.
49 Keren A. S., Yuval-Greenberg S., & Deouell L. Y . ( 2010). Saccadic spike potentials in gamma-band EEG: Characterization, detection and suppression. NeuroImage, 49( 3), 2248-2263.
pmid: 19874901
50 Kharate G. K., Patil V. H., & Bhale N. L . ( 2007). Selection of mother wavelet for image compression on basis of nature of image. Journal of Multimedia, 2( 6), 44-51.
51 Kleen J. K., Testorf M. E., Roberts D. W., Scott R. C., Jobst B. J., Holmes G. L., & Lenck-Santini P.-P . ( 2016). Oscillation phase locking and late ERP components of intracranial hippocampal recordings correlate to patient performance in a working memory task. Frontiers in Human Neuroscience, 10, 287.
52 Klimesch, W . ( 1999). EEG alpha and theta oscillations reflect cognitive and memory performance: A review and analysis. Brain Research Reviews, 29( 2-3), 169-195.
53 Klimesch, W . ( 2012). alpha-band oscillations, attention, and controlled access to stored information. Trends in Cognitive Sciences, 16( 12), 606-617.
pmid: 23141428
54 Klimesch W., Schack B., Schabus M., Doppelmayr M., Gruber W., & Sauseng P . ( 2004). Phase-locked alpha and theta oscillations generate the P1-N1 complex and are related to memory performance. Cognitive Brain Research, 19( 3), 302-316.
55 Knakker B., Weiss B., & Vidnyánszky Z . ( 2015). Object- based attentional selection modulates anticipatory alpha oscillations. Frontiers in Human Neuroscience, 8, 1048.
pmid: 4290602
56 Kwon G., Kim M.-Y., Lim S., Kwon H., Lee Y.-H., Kim K., .. Suh M . ( 2015). Frontoparietal EEG alpha-phase synchrony reflects differential attentional demands during word recall and oculomotor dual-tasks. NeuroReport, 26( 18), 1161-1167.
57 Lachaux J. P., Rodriguez E., Martinerie J., & Varela F. J . ( 1999). Measuring phase synchrony in brain signals. Human Brain Mapping, 8( 4), 194-208.
pmid: 10619414
58 Lee, D. T. L., & Yamamoto, A . ( 1994). Wavelet analysis: Theory and applications. Hewlett-Packard Journal, 45, 44-54.
59 Lieuw, I . ( 2015). Time frequency analysis of neural oscillations in multi-attribute decision-making. Scripps senior theses, Paper 556.
60 Luck S. J. ( 2005). An introduction to the event-related potential technique. Cambridge: MIT Press.
61 Makeig S., Westerfield M., Jung T. P., Enghoff S., Townsend J., Courchesne E., & Sejnowski T. J . ( 2002). Dynamic brain sources of visual evoked responses. Science, 295( 5555), 690-694.
pmid: 11809976
62 Makin A. D. J., Ackerley R., Wild K., Poliakoff E., Gowen E., & El-Deredy W . ( 2011). Coherent illusory contours reduce microsaccade frequency. Neuropsychologia, 49( 9), 2798-2801.
pmid: 21683722
63 Mäkinen V., Tiitinen H., & May P . ( 2005). Auditory event-related responses are generated independently of ongoing brain activity. NeuroImage, 24( 4), 961-968.
pmid: 15670673
64 Marshall T. R., O'Shea J., Jensen O., & Bergmann T. O . ( 2015). Frontal eye fields control attentional modulation of alpha and gamma oscillations in contralateral occipitoparietal cortex. Journal of Neuroscience, 35, 1638-1647.
65 Martinovic J., Gruber T., & Müller M. M . ( 2007). Induced gamma band responses predict recognition delays during object identification. Journal of Cognitive Neuroscience, 19( 6), 921-934.
pmid: 17536963
66 Mathewson K. E., Gratton G., Fabiani M., Beck D. M., & Ro T . ( 2009). To see or not to see: Prestimulus α phase predicts visual awareness. Journal of Neuroscience, 29( 9), 2725-2732.
pmid: 19261866
67 Mazaheri, A., & Jensen, O . ( 2006). Posterior α activity is not phase-reset by visual stimuli. Proceedings of the National Academy of Sciences of the United States of America, 103( 8), 2948-2952.
68 Mazaheri, A., & Picton, T. W . ( 2005). EEG spectral dynamics during discrimination of auditory and visual targets. Cognitive Brain Research, 24( 1), 81-96.
pmid: 15922161
69 Mishra J., Martínez A., Schroeder C. E., & Hillyard S. A . ( 2012). Spatial attention boosts short-latency neural responses in human visual cortex. NeuroImage, 59( 2), 1968-1978.
pmid: 21983181
70 Morgan H. M., Muthukumaraswamy S. D., Hibbs C. S., Shapiro K. L., Bracewell R. M., Singh K. D., & Linden, D. E. J . ( 2011). Feature integration in visual working memory: Parietal gamma activity is related to cognitive coordination. Journal of Neurophysiology, 106( 6), 3185-3194.
71 Muthukumaraswamy, S. D . ( 2013). High-frequency brain activity and muscle artifacts in MEG/EEG: A review and recommendations. Frontiers in Human Neuroscience, 7, 138.
72 Neural oscillation . ( 2018, January 5). In Wikipedia, the free encyclopedia. Retrieved January 24, 2018, from
73 Ngui W. K., Leong M. S., Hee L. M., & Abdelrhman A. M . ( 2013). Wavelet analysis: Mother wavelet selection methods. Applied Mechanics and Materials, 393, 953-958.
74 Nobach H., Tropea C., Cordier L., Bonnet J.-P., Delville J., Lewalle J., .. Adrian R . ( 2007). Review of some fundamentals of data processing. In C. Tropea, A. L. Yarin, & J. F. Foss (Eds.), Springer handbook of experimental fluid mechanics( pp. 1337-1398). Berlin, Heidelberg: Springer.
75 Norcia A. M., Appelbaum L. G., Ales J. M., Cottereau B. R., & Rossion B . ( 2015). The steady-state visual evoked potential in vision research: A review. Journal of Vision, 15( 6), 4.
pmid: 4581566
76 Palva, S., & Palva, J. M . ( 2011). Functional roles of alpha-band phase synchronization in local and large-scale cortical networks. Frontiers in Psychology, 2, 204.
77 Pampu, N. C . ( 2011). Study of effects of the short time fourier transform configuration on EEG spectral estimates. Acta Technica Napocensis: Electronics and Telecommunications, 52, 26-29.
78 Penny W. D., Duzel E., Miller K. J., & Ojemann J. G . ( 2008). Testing for nested oscillation. Journal of Neuroscience Methods, 174( 1), 50-61.
79 Pockett S., Bold G. E. J., & Freeman W. J . ( 2009). EEG synchrony during a perceptual-cognitive task: Widespread phase synchrony at all frequencies. Clinical Neurophysiology, 120( 4), 695-708.
pmid: 19250863
80 Regan, D . ( 1966). Some characteristics of average steady-state and transient responses evoked by modulated light. Electroencephalography and Clinical Neurophysiology, 20( 3), 238-248.
pmid: 4160391
81 Rihs T. A., Michel C. M., & Thut G . ( 2007). Mechanisms of selective inhibition in visual spatial attention are indexed by α-band EEG synchronization. European Journal of Neuroscience, 25( 2), 603-610.
82 Roach, B. J., & Mathalon, D. H . ( 2008). Event-related EEG time-frequency analysis: An overview of measures and an analysis of early gamma band phase locking in schizophrenia. Schizophrenia Bulletin, 34( 5), 907-926.
83 Rose M., Sommer T., & Büchel C . ( 2006). Integration of local features to a global percept by neural coupling. Cerebral Cortex, 16( 10), 1522-1528.
pmid: 16339083
84 Rossion B., Prieto E. A., Boremanse A., Kuefner D., & van Belle G . ( 2012). A steady-state visual evoked potential approach to individual face perception: Effect of inversion, contrast-reversal and temporal dynamics. NeuroImage, 63( 3), 1585-1600.
85 Samiee, S., & Baillet, S . ( 2017). Time-resolved phase- amplitude coupling in neural oscillations. NeuroImage, 159, 270-279.
pmid: 28757194
86 Sauseng P., Klimesch W., Stadler W., Schabus M., Doppelmayr M., Hanslmayr S., .. Birbaumer N . ( 2005). A shift of visual spatial attention is selectively associated with human EEG alpha activity. European Journal of Neuroscience, 22( 11), 2917-2926.
pmid: 16324126
87 Selesnick, I. W . ( 2011). Wavelet transform with tunable Q-factor. IEEE Transactions on Signal Processing, 59( 8), 3560-3575.
88 Sharma, A., & Singh, M . ( 2015). Assessing alpha activity in attention and relaxed state: An EEG analysis. In 2015 1st international conference on next generation computing technologies ( pp. 508-513). Dehradun: IEEE.
89 Siegel M., Donner T. H., Oostenveld R., Fries P., & Engel A. K . ( 2008). Neuronal synchronization along the dorsal visual pathway reflects the focus of spatial attention. Neuron, 60( 4), 709-719.
90 Snyder, A. C., & Foxe, J. J . ( 2010). Anticipatory attentional suppression of visual features indexed by oscillatory alpha-band power increases: A high-density electrical mapping study. Journal of Neuroscience, 30( 11), 4024-4032.
91 Song K., Meng M., Chen L., Zhou K., & Luo H . ( 2014). Behavioral oscillations in attention: Rhythmic α pulses mediated through θ band. Journal of Neuroscience, 34( 14), 4837-4844.
pmid: 24695703
92 Spencer K. M., Nestor P. G., Niznikiewicz M. A., Salisbury D. F., Shenton M. E., & McCarley R. W . ( 2003). Abnormal neural synchrony in schizophrenia. Journal of Neuroscience, 23( 19), 7407-7411.
93 StÖrmer V., Feng W. F., Martinez A., McDonald J. J., & Hillyard S. A . ( 2016). Salient, irrelevant sounds reflexively induce alpha rhythm desynchronization in parallel with slow potential shifts in visual cortex. Journal of Cognitive Neuroscience, 28( 3), 433-445.
94 Tallon-Baudry, C . ( 2009). The roles of gamma-band oscillatory synchrony in human visual cognition. Frontiers in Bioscience, 14, 321-332.
pmid: 19273069
95 Tallon-Baudry, C., & Bertrand, O . ( 1999). Oscillatory gamma activity in humans and its role in object representation. Trends in Cognitive Sciences, 3( 4), 151-162.
pmid: 10322469
96 Tallon-Baudry C., Bertrand O., & Fischer C . ( 2001). Oscillatory synchrony between human extrastriate areas during visual short-term memory maintenance. Journal of Neuroscience, 21, RC177.
97 Thut G., Nietzel A., Brandt S. A., & Pascual-Leone A . ( 2006). α-band electroencephalographic activity over occipital cortex indexes visuospatial attention bias and predicts visual target detection. Journal of Neuroscience, 26( 37), 9494-9502.
98 Torrence, C., & Compo, G. P . ( 1998). A practical guide to wavelet analysis. Bulletin of the American Meteorological Society, 79( 1), 61-78.
99 Tort A. B. L., Komorowski R. W., Manns J. R., Kopell N. J., & Eichenbaum H . ( 2009). Theta-gamma coupling increases during the learning of item-context associations. Proceedings of the National Academy of Sciences of the United States of America, 106( 49), 20942-20947.
100 Tseng P., Chang Y. T., Chang C. F., Liang W. K., & Juan C. H . ( 2016). The critical role of phase difference in gamma oscillation within the temporoparietal network for binding visual working memory. Scientific Reports, 6, 32138.
101 Uusberg A., Uibo H., Kreegipuu K., & Allik J . ( 2013). EEG alpha and cortical inhibition in affective attention. International Journal of Psychophysiology, 89( 1), 26-36.
102 Valipour S., Shaligram A. D., & Kulkarni G. R . ( 2013). Spectral analysis of EEG signal for detection of alpha rhythm with open and closed eyes. International Journal of Engineering and Innovative Technology, 3( 6), 1-4.
103 van Gerven, M., & Jensen, O . ( 2009). Attention modulations of posterior alpha as a control signal for two-dimensional brain-computer interfaces. Journal of Neuroscience Methods, 179, 78-84.
104 Vidakovic, B., & Mueller, P . ( 1991). Wavelets for kids: A tutorial introduction. Duke University.
105 Waldert S., Preissl H., Demandt E., Braun C., Birbaumer N., Aertsen A., & Mehring C . ( 2008). Hand movement direction decoded from MEG and EEG. Journal of Neuroscience, 28( 4), 1000-1008.
pmid: 18216207
106 Womelsdorf T., Johnston K., Vinck M., & Everling S . ( 2010). Theta-activity in anterior cingulate cortex predicts task rules and their adjustments following errors. Proceedings of the National Academy of Sciences of the United States of America, 107( 11), 5248-5253.
107 Woodman, G. F . ( 2010). A brief introduction to the use of event-related potentials in studies of perception and attention. Attention, Perception, & Psychophysics, 72( 8), 2031-2046.
108 Worden M. S., Foxe J. J., Wang N., & Simpson G. V . ( 2000). Anticipatory biasing of visuospatial attention indexed by retinotopically specific α-band electroencephalography increases over occipital cortex. The Journal of Neuroscience, 20, RC63.
109 Yuval-Greenberg S., Tomer O., Keren A. S., Nelken I., & Deouell L. Y . ( 2008). Transient induced gamma-band response in EEG as a manifestation of miniature saccades. Neuron, 58( 3), 429-441.
pmid: 18466752
[1] 诸彦含, 陈晓卉, 赵玉兰, 周意勇.  工作中的能量:基于多层面表现形态的对流转化[J]. 心理科学进展, 2017, 25(7): 1218-1228.
[2] 徐琴芳, 王延培.  脑电测量在儿童发展性障碍诊断中的应用[J]. 心理科学进展, 2017, 25(12): 2136-2144.
[3] 程凯;曹贵康. 走神的理论假设、影响因素及其神经机制[J]. 心理科学进展, 2014, 22(9): 1435-1445.
[4] 蔡林;张亚旭. 句子理解过程中句法与语义加工的EEG时频分析[J]. 心理科学进展, 2014, 22(7): 1112-1121.
[5] 吴超;吴玺宏;李量. 精神分裂症患者在听觉掩蔽环境下的言语识别[J]. 心理科学进展, 2013, 21(6): 958-964.
[6] 谭树华;许燕;王芳;宋婧. 自我损耗:理论、影响因素及研究走向[J]. 心理科学进展, 2012, 20(5): 715-725.
[7] 万群; 林苗; 钱秀莹. 时间知觉的脑机制:时钟模型的困境和新导向[J]. 心理科学进展, 2010, 18(03): 394-402.
[8] 徐李娟;黄莹;吴玺宏;吴艳红;李量. “鸡尾酒会”环境中的知觉线索的去掩蔽作用[J]. 心理科学进展, 2009, 17(02): 261-267.
[9] 庄建程;张侃. 协同论在脑和行为研究方面的一些应用[J]. 心理科学进展, 1997, 15(02): 7-11.
[10] 李永建. 心理不应期的研究与进展[J]. 心理科学进展, 1996, 14(01): 52-56.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《心理科学进展》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发  技术支持:support@magtech.com.cn