As one of the leading researching topics of contemporary cognitive science, strategy use depends on many factors, such as situation, problem characteristics, individual differences including math anxiety, etc. (Siegler, 2007; Imbo & Vandierendonck, 2007).Various theories on arithmetic anxiety have been proposed, however, the role of arithmetic anxiety in strategy utilization and its potential mechanism is still far from clear (Wang & Liu, 2007). The neural mechanism of arithmetic strategies utilization affected by math anxiety still needs further exploring. Event-Related Potentials (ERPs) is usually utilized in exploring brain mechanisms in arithmetic performance, and the choice/no-choice method is a standard method to obtain unbiased data about strategy utilization. In this study, we employed the ERPs and choice/no-choice method to investigate the influence of math anxiety upon individual strategy utilization during arithmetic processing. Revised Mathematics Anxiety Rating Scale (R-MARS) and Trait Anxiety Inventory were used to test 154 students and 34 participants were picked and divided to two groups (17 high math anxiety and 17 low math anxiety). Participants were required to finish the two-digit addition computational mental arithmetic and computational estimation based on applying the ERP technique to test the neurophysiologic activity in the choice/no-choice method. Three subjects were excluded by artifact rejection due to severe contamination (15 high math anxiety and 16 low math anxiety). The experimental design was as following: 2 (computational estimation, mental arithmetic) × 2 (high math anxiety, low math anxiety) × 3 (free-choice condition, no-choice- 1--mental arithmetic decomposition strategy/computational estimation rounding-up condition, no-choice-2 --mental arithmetic decomposition strategy/computational estimation rounding- down condition), and math anxiety was between-subject variable, task type and strategy choice conditions were within-subject variables. Behavioral results showed that: reaction time and accuracy of math anxiety individuals were not significantly different on the strategy execution aspects (no-choice xsc2, xsc3, gsc2, gsc3) and strategy selection aspects (free-choice condition xsc1, gsc1). ERP results showed that: 1) the main effect of math anxiety was significant in N100 in strategy selection aspects and computational estimation strategy execution aspects, namely the N100 amplitude of high math anxiety was greater than low math anxiety, and the N100 latency in mental arithmetic strategy selection aspects ; 2)the effect of dimensions before and after was significant in P200 latency of low math anxiety individual in mental arithmetic strategy execution aspects; 3)The main effect of math anxiety was significant in N100 in F3, F4, PO3 in computational estimation strategy selection aspects and in F3 in mental arithmetic strategy execution aspects, namely the N400 amplitude of high math anxiety was greater than low math anxiety in F3, F4, PO3, and the N400 latency of high math anxiety was shorter than low math anxiety in computational estimation strategy selection aspects; In strategy execution aspects, the N400 amplitude of high math anxiety was greater than low math anxiety in F3. Our results show that math anxiety affects arithmetic strategy use which is based on the theory of cognitive resources, such as processing efficiency theory, attentional control theory, inhibition theory, etc. When arithmetic cognitive activity was impacted by anxiety, high anxious individuals will increase efforts and auxiliary processing resources (physiological level) to complete the task, which to make up the occupied working memory resources caused by impaired cognitive performance (behavioral level). And emotional factors cannot be ignored.